• Title/Summary/Keyword: total suspended solids

Search Result 250, Processing Time 0.03 seconds

Application of tube-type ceramic microfiltration membrane for post-treatment of effluent from biological wastewater treatment process using phase separation

  • Son, Dong-Jin;Kim, Woo-Yeol;Yun, Chan-Young;Kim, Dae-Gun;Chang, Duk;Sunwoo, Young;Hong, Ki-Ho
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.377-383
    • /
    • 2017
  • A tube-type ceramic membrane for microfiltration was developed, and the membrane module comprised of three membranes was also applied to biological carbon and nitrogen removal processes for post-treatment. Manufacturing the microfiltration membrane was successful with the structure and boundary of the coated and support layers within the membrane module clearly observable. Total kjeldahl nitrogen removal from effluent was additionally achieved through the elimination of solids containing organic nitrogen by use of the ceramic membrane module. Removal of suspended solids and colloidal substances were noticeably improved after membrane filtration, and the filtration function of the ceramic membrane could also easily be recovered by physical cleaning. By using the ceramic membrane module, the system showed average removals of organics, nitrogen, and solids up to 98%, 80% and 99.9%, respectively. Thus, this microfiltration system appears to be an alternative and flexible option for existing biological nutrient removal processes suffering from poor settling performance due to the use of a clarifier.

REDUCTION OF SEDIMENT-LADEN WATER FROM CONSTRUCITON SITES INTO WATERWAYS:- A GOVERNMENT AND INDUSTRY APPROACH

  • Teo Ee Huat
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.285-291
    • /
    • 2009
  • Water is a strategic resource for Singapore due to its small land mass and more than half of the mainland serves as catchment for raw water, including construction sites. Construction site typically involves earthworks and in conjunction with the frequent and intense rainstorm in Singapore, produce runoff of high turbidity due to suspended sediments. The resulting high concentration of suspended sediment in construction site runoff very often leads to aesthetically unpleasant reservoirs and potentially increases the treatment cost of raw water. To mitigate this, the local standard requires the discharged concentration of total suspended solids of construction runoff leaving a construction site to be less than 50mg/l which is a very high standard. This paper will present, examine and discuss particular issues and practices of Singapore's construction industry in meeting this requirement. The focus will be on two areas: Government lead initiatives and industry practices. How the government agencies worked together with the industry professionals to develop a system to ensure meeting of the standard is discussed. In addition, the types of industry practices, including various Best Management Practice to reduce erosion in construction sites and implement effective sedimentation on construction sites are examined.

  • PDF

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.

Performance of GACC and GACP to treat institutional wastewater: A sustainable technique

  • Khaleel, Mohammed R.;Ahsan, Amimul;Imteaz, M.;El-Sergany, M.M.;Nik Daud, N.N.;Mohamed, T.A.;Ibrahim, Buthainah A.
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.339-349
    • /
    • 2015
  • Experiments were carried out using granular activated carbon (GAC) adsorption techniques to treat wastewater contaminated with organic compounds caused by diverse human activities. Two techniques were assessed: adsorbent GAC prepared from coconut shell (GACC) and adsorbent GAC from palm shell (GACP). A comparison of these two techniques was undertaken to identify ways to improve the efficiency of the treatment process. Analysis of the processed wastewater showed that with GACC the removal efficiency of biochemical oxygen demand (BOD), chemical oxygen demand (COD), turbidity, total suspended solids (TSS) and total dissolved solids (TDS) was 65, 60, 82, 82 and 8.7%, respectively, while in the case of GACP, the removal efficiency was 55, 60, 81, 91 and 22%, respectively. It can therefore be concluded that GACC is more effective than GACP for BOD removal, while GACP is better than GACC for TSS and TDS removal. It was also found that for COD and turbidity almost the same results were achieved by the two techniques. In addition, it was observed that both GACC and GACP reduced pH value to 7.9 after 24 hrs. Moreover, the optimal time period for removal of BOD and TDS was 1 hr and 3 hrs, respectively, for both techniques.

Effect of graphene oxide on polyvinyl alcohol membrane for textile wastewater treatment

  • Zahoor, Awan;Naqvi, Asad A.;Butt, Faaz A.;Zaidi, Ghazanfar R.;Younus, Muhammad
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.121-128
    • /
    • 2022
  • A tremendous amount of energy resources is being wasted in cleaning wastewater to save the environment across the globe. Several different procedures are commercially available to process wastewater. In this work, membrane filtration technique is used to treat the textile wastewater because of its cost effectiveness and low environmental impacts. Mixed Matrix Membrane (MMM) consist of Polyvinyl Alcohol (PVA) in which Graphene Oxide (GO) was added as a filler material. Five different membranes by varying the quantity of GO were prepared. The prepared membrane has been characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Water Contact Angle (WCA). The prepared membranes have been utilized to treat textile wastewater. The synthesized membranes are used for the elimination of total dissolve solids (TDS), total suspended solids (TSS), Methylene blue (MB) dye and copper metallic ions from textile wastewater. It is concluded that amount of GO has direct correlation with the quality of wastewater treatment. The maximum removal of TDS, TSS, MB and copper ions are found to be 7.42, 23.73, 50.53 and 64.5% respectively and are achieved by 0.02 wt% PVA-GO membrane.

Monitoring on Water Quality Changes of Rural Watersheds in the North Han River Basin (북한강수계 농업 소유역의 수질변화 모니터링)

  • Choi, Joong-Dae;Yang, Jae E.;Kim, Do-Hwan;Choi, Byung-Yong;Choi, Kyoung-JIn;Park, Ji-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.695-700
    • /
    • 1999
  • Stream and groundwater qualities of two rural watershes in the upper North Han river basin were monitored for 14months. Six to eight stream sampling sites and two to there groundwater monitoring wells were chosen and water samples were regularyl collected and analyzed with respect to total nitrogen(T-N), total phosphorus(T-P) and total suspended solids(TSS). Monitoring data were graphically analyzed with respect to time.Rainfall amout and intensity seemed to have an impact on stream T-N and T-P concentration changes. TSS concentrations were generally lower than the first class stream water quality standared, Both stream and groundwater qualities near livesstock feetlot areas were degraded indicating the feedlots have an impact on water quality.

  • PDF

Influences of Seasonal Rainfall on Physical, Chemical and Biological Conditions Near the Intake Tower of Taechung Reservoir (대청호의 취수탑 주변의 이화학적${\cdot}$생물학적 상태에 대한 계절강우의 영향)

  • Seo, Jin-Won;Park, Seok-Soon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.327-336
    • /
    • 2001
  • Physical, chemical, and biological parameters were measured during the period from July 1993 to August 1994 near the Munui intake tower of Taechung Reservoir to evaluate effects of nutrients and suspended solids on algal chlorophyll-a and water clarity. Large amounts of precipitation during summer 1993 produced minimum conductivity ($88\;{\mu}S/cm$), minimum TN : TP (<40), and maximum total phosphorus (TP;$59\;{\mu}g/L$) and resulted in a chlorophyll-a peak ($79\;{\mu}g/L$) and minimum transparency (<1.5 m) among the seasons. At the same time, ratios of volatile suspended solids (VSS): non-volatile suspended solids (NVSS) were maximum (13.0),indicating that the reduced transparency was mainly attributed to biogenic turbidity in relation to phytoplankton growth. In contrast, severe drought in summer 1994 resulted in greater conductivity (>$120\;{\mu}S/cm$), water clarity (%gt;2 m), and lower TP and chlorophyll- a (<$10\;{\mu}g/L$) relative to those of summer 1993. Total phosphorus ($R^2=0.46$, n=59) accounted more variations of chlorophyll- a compared to total nitrogen ($R^2=0,29$, n=59). The mass ratios of TN : TP ranged from 39 to 222 and were strongly correlated with TP (r = -0.80) but not with concentrations of TN (r = 0.05). Ambient nutrient concentrations and TN : TP mass ratios indicated that seasonality of chlorophyll- a was likely determined by concentrations of phosphorus reflected by the distribution of rainfall. It was concluded that reductions of phosphorus during heavy rainfall may provide better water quality for the drinking water in the intake tower.

  • PDF

Characteristics of Road Runoff depending on the Rainfall Intensity (강우강도에 따른 노면유출수의 유출 특성)

  • Kim, Seog-Ku;Kim, Young-Im;Yun, Sang-Leen;Lee, Yong-Jae;Kim, Ree-Ho;Kim, Jong-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.494-499
    • /
    • 2004
  • Growth in population and urbanization has progressively increased the loadings of pollutants from non-point sources as well as point sources. Therefore, it is necessary to manage both point and non-point sources contaminations for protecting water environment and improving water quality. This study investigated the characteristics of pollutant release over a wide range of rainfall intensities as a requisite to control road runoff that accounts for the largest portion of non-point source contamination in urban areas. Samples of runoff rainwater collected from real road surfaces were analyzed for physicochemical parameters such as pH, suspended solids, and heavy metals. A experimental model road ($30cm{\times}30cm$) was also used to evaluate wash-off properties of pollutants deposited on the surface as functions of time and rainfall intensity. Analysis of runoff samples on rain events showed that the pollutant wash-off patterns for heavy metal and suspended solids were similar. This implies that the particles in rainwater adsorb heavy metals. Experiments using the model road made of impervious asphalt demonstrate a strong first flush phenomenon. At high rainfall intensity, approximately 80% of total pollutants were released within 15 min. The pollutant wash-off rates rapidly increase from 9 mm/hr to 12 mm/hr of rainfall intensity and decrease over 12 mm/hr of rainfall intensity.

Long-term Trends of Summer Season of Water Quality in Lake Doam (도암호에서 하절기 수질의 장기적인 경향)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Lee, Changkeun;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.128-134
    • /
    • 2013
  • In the summer season (June~August) during the study period of Lake Doam, average concentrations of major water quality parameters, COD, SS, TN, and TP were 4.0, 16.2, 3.129 and $0.077mg\;L^{-1}$, respectively, and Chl-a was $11.8mg\;m^{-3}$. The result has indicated that Lake Doam was a meso-eutrotrophic lake. Lake Doam data from the summer season (June~August), precipitation from 2001 to 2012, and water quality (COD, SS, TN, TP, Chl-a etc.) of seven years (2001, 2002, 2004 and 2009~2012), were statistically analyzed for long-term trends by Mann-Kendall test and Sen's slope estimator methods. The statistical results showed that precipitation, SD, COD, TN, $NO_3-N$, $NH_3-N$ and Chl-a had decreasing trends, and EC, turbidity, SS, TP and DIP had increasing trends. Suspended solids and total phosphorus were directly affected by precipitation. In the case of suspended solids, more aggressive and constructive plans need to be implemented than the current turbidity reduction project to achieve the targeted water quality ($5mg\;L^{-1}$ of SS) in Lake Doam. In particular, we need to specify a project that considers the steep topographic characteristics of high, land farming areas and precipitation conditions of the Lake Doam watershed, which can increase the efficiency of a turbidity reduction project.

Dairy wastewater treatment using microalgae for potential biodiesel application

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2016
  • The aim of this study was to evaluate the biomass production and dairy wastewater treatment using Chlorella vulgaris. The results indicated that the maximum percentages of biochemical oxygen demand, chemical oxygen demand, suspended solids, total nitrogen, and total phosphorus removed were 85.61%, 80.62%, 29.10%, 85.47%, and 65.96%, respectively, in dairy effluent at 10 d. A maximum of 1.23 g/L dry biomass was obtained in 7 d. The biomass productivity was strongly influenced by the nutrient reduction in the dairy effluent. The biodiesel produced by the C. vulgaris in the dairy effluent was in good agreement with the American Society of Testing and Materials-D6751 and European Standards 14214 standards. Therefore, using dairy effluent for microalgal cultures could be a useful and practical strategy for an advanced, environmentally friendly treatment process.