• Title/Summary/Keyword: total suspended solids

Search Result 250, Processing Time 0.027 seconds

Comparison study on membrane fouling by various sludge fractions with long solid retention time in membrane bioreactor

  • Sun, Darren Delai;Liu, Shushu
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.175-189
    • /
    • 2013
  • A membrane bioreactor (MBR) with sludge retention time (SRT) of 300 days was maintained for over 2 years. Polypropylene microfiltration (MF) membrane with pore size of 0.2 ${\mu}m$ was used in the MBR system. The fouling behaviors of various sludge fractions from the MBR were studied and sub-divided resistances were analyzed. It was observed that $R_{cp}$ was a dominant resistance during the filtration of activated sludge, contributing 63.0% and 59.6% to the total resistance for MBR and sequential batch reactor (SBR) respectively. On the other hand, $R_c$ played the significant role during the filtration of supernatant and solutes, varying between 54.54% and 67.18%. Compared with $R_{cp}$ and $R_c$, $R_{if}$ was negligible, and $R_m$ values remained constant at $0.20{\times}10^{12}m^{-1}$. Furthermore, resistances of all sludge fractions increased linearly with rising mixed liquor suspended solids (MLSS) concentration and growing trans-membrane pressure (TMP), while the relationship was inversed between fraction resistances and cross flow velocity (CFV). Among all fractions of activated sludge, suspended solid was the main contributor to the total resistance. A compact cake layer was clearly observed according to the field emission scanning electro microscopy (FE-SEM) images.

Variations of Limnological Functions in a Man-made Reservoir Ecosystem during High-flow Year vs. Low-flow Year

  • Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.487-494
    • /
    • 2009
  • We compared spatial and temporal variations of water chemistry between high-flow year ($HF_y$) and low-flow year ($LF_y$) in an artificial lentic ecosystem of Daechung Reservoir. The differences in the rainfall distributions explained the variation of the annual inflow and determined flow characteristics and water residence time and modified chemical and biological conditions, based on TP, suspended solids, and chlorophylla, resulting in changes of ecological functions. The intense rainfall and inflow from the watershed resulted in partial disruption of thermal structure in the metalimnion depth, ionic dilution, high TP, and high suspended solids. This condition produced a reduced chlorophyll-a in the headwaters due to low light availability and rapid flushing. In contrast, reduced inflow and low rainfall by drought resulted in strong thermal difference between the epilimnion and hypolimnion, low inorganic solids, high total dissolved solids, and low phosphorus in the ambient water. The riverine conditions dominated the hydrology in the monsoon of $HF_y$ and lacustrine conditions dominated in the $HF_y$. Overall data suggest that effective managements of the flow from the watershed may have an important role in the eutrophication processes.

Effect of solids retention time on membrane fouling in membrane bioreactors at a constant mixed liquor suspended solids concentration

  • Hao, L.;Liss, S.N.;Liao, B.Q.
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.337-353
    • /
    • 2017
  • Membrane fouling at different solids retention times (SRT) (7, 12 and 20 days) was studied under well-controlled conditions in a laboratory-scale aerobic submerged membrane bioreactor under constant biomass concentration using a synthetic high strength wastewater. An increase in SRT was found to improve membrane performance and this correlated to changes in the total production of bound extracellular polymeric substances (EPS), and the composition and properties of bound EPS using X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FTIR) and floc sizes. A larger amount of total bound EPS was found at the lowest SRT (7 days) tested but the ratio of proteins (PN) to carbohydrates (CH) in bound EPS increased with an increase in SRT. Similarly, the quantity of soluble microbial products (SMP) decreased with an increase in SRT and the SMP PN/CH ratio increased with an increase in SRT. SMP concentrations positively correlated to the percentage of membrane pore blocking resistance. The quantity of total bound EPS and total SMP positively corresponded to the membrane fouling rate, while the PN/CH ratio in the bound EPS and SMP negatively correlated to the membrane fouling rate. The results show that both the quantity and composition of bound EPS and SMP and floc sizes are important in controlling membrane fouling.

Longitudinal and Vertical Variations of Long-term Water Quality along with Annual Patterns in Daecheong Reservoir

  • Lee, Sang-Jae;Shin, Jae-Ki;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.199-211
    • /
    • 2010
  • The objectives for this study were to evaluate spatial and temporal characteristics of water quality, based on long-term water quality monitoring data during 1993~2008. We found that physico-chemical and ecological conditions in the Daecheong Reservoir (DR) were modified by the construction of upper dam (i.e., Yongdam Reservoir). total phosphorus (TP), Secchi depth (SD), and chlorophyll-a (CHL) in the DR showed significant longitudinal decreases along the headwater-to-the downlake, indicating a large spatial variation, and this gradient was more intensified during the high-flow season (monsoon). Nutrient-rich water containing high nitrogen and phosphorus in the monsoon season (July~August) passed through the reservoir as a density current in the metalimnetic depth, and also high suspended solids increased in the metalimnetic depth, especially during the monsoon. According to the deviation analysis of Trophic State Index (TSI), >50% of TSI (CHL)-TSI (SD) and TSI (CHL)-TSI (TP) values were negatives, so that inorganic suspended solids (non-votatile solids) influenced the underwater light regime against phytoplankton growth. Also, ratios of CHL:TP after the dam construction evidently increased, compared to the values before the upper dam constructions, indicating a greater yield of phytoplankton in the unit phosphorus. Overall data showed that ecological and functional changes in Daecheong Reservoir occurred after the construction of upper dam (Yongdam Reservoir).

Effective Trapping of Suspended Solids by Biofilter of Intensive Bioproduction Korean System

  • Kim, In-Bae;Jo, Jae-Yoon
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.181-183
    • /
    • 2008
  • It has been a very hard problem to reduce solids especially suspended solids (SS) in recirculating aquaculture systems. Present description is based on the performance of trapping SS by the biofilter of Intensive Bio-production Korean (IBK) system which is originally developed for nitrification. We found out that this filter has an excellent capability to remove SS in addition to nitrification. Filter element used here is corrugated plastic roofing plates readily available in the market, and cheaper than specially developed and patented products. It is easy to maintain the system, and requires low power consumption to operate for the treatment of a large amount of water. With 2 pumps of 5 hp each, about 500 $m^3$ of water is treated per hour. Flow speed in the filter was 2.6 mm/sec on average. This low flow speed and very large amount of water treated are the reasons for very effective trapping of fine SS. Upon single pass through this filter, 74.5% of total SS and 40% of non-settleable SS were removed. Wherever this filter is employed in recirculating fish farms water keeps high clarity, this having also been empirically ascertained.

Characteristics of Proteins and Total Suspended Solids Removal by Counter Current Air Driven Type, High Speed Aeration Type and Venturi Type Foam Separator in Aquacultural Water (향류 공기 구동식, 고속 폭기식 및 벤튜리식 포말분리기에 의한 양어장수의 단백질 및 부유 고형물의 제거 특성)

  • SUH Kuen-Hack;KIM Byong-Jin;KIM Sung-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.205-212
    • /
    • 2000
  • Experimental investigations on the removal of protein, total suspended solids and turbidity from aquacultural water were carried out by using three types of foam separator: counter current air driven type foam separator (CCADFS), high speed aeration type foam separator (HSAFS) and venturi type foam separator (VFS). The decrease of flow rate by CCADFS, HSAFS and VFS were $0.4,\;66.1,\;77.2 {\%}$ respectively. Protein removal rates by three types foam separator were decreased with the increased hydraulic residence time (HRT). Bellw 0.32 minute and 0.21 minute of hydraulic residence times, protein removal rate of HSAFS and YES was higher than that of CCADFS, respectively. Protein removal rate of VFS was lower than that of HSAFS at any HRT. As increasing the HRT, protein removal efficiency of CCADFS was increased, but that of HSAFS and VES were decreased. The changes of removal rates and efficiencies of total suspended solid and turbidity were similar to proteins.

  • PDF

Evaluation of Suspended Solids and Eutrophication in Chungju Lake Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 부유물질 및 부영양화 모의평가)

  • Ahn, So Ra;Kim, Sang Ho;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1115-1128
    • /
    • 2013
  • The purpose of this study is to evaluate the suspended solids and eutrophication processes relationships in Chungju lake using CE-QUAL-W2, two-dimensional (2D) longitudinal/vertical hydrodynamic and water quality model. For water quality modeling, the lake segmentation was configured as 7 branches system according to their shape and tributary distribution. The model was calibrated (2010) and validated (2008) using 2 years of field data of water temperature, suspended solids (SS), total nitrogen (TN), total phosphorus (TP) and algae (Chl-a). The water temperature began to increase in depth from April and the stratification occurred at about 10 m early July heavy rain. The high SS concentration of the interflow density currents entering from the watershed was well simulated especially for July 2008 heavy rainfall event. The simulated concentration range of TN and TP was acceptable, but the errors might occur form the poor reflection for sedimentation velocity of nitrogen component and adsorption-sediment of phosphorus in model. The concentration of Chl-a was simulated well with the algal growth patterns in summer of 2010 and 2008, but the error of under estimation may come from the use of width-averaged velocity and concentration, not considering the actual to one side inclination by wind effect.

Temporal and Spatial Variation Analysis of Suspended Solids, Ionic Contents, and Habitat Quality in the Woopo Wetland Watershed (우포늪 수계에서 부유물, 이온농도 및 서식지 특성에 대한 시 ${\cdot}$ 공간적 변이 분석)

  • Bae, Dae-Yeul;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.498-507
    • /
    • 2006
  • The main objective of present study was to evaluate how seasonal rainfall influenced natural habitat conditions of 10 metric habitat variables along with ionic conditions and suspended solids in the Woopo Wetland during August 2002-July 2003. Largest spatial variabilities in total suspended solids (TSS) occurred during the summer monsoon and the inorganic suspended solids (ISS), expressed as a inorganic proportion of total solids, showed linearly increasing trend from the upstream to downstream. This phenomenon was mainly attributed to counter flow of turbid water from the main Nakdong-River. During the flooding, ISS : TSS ratio showed large increases (92%) in the downstream than the upstream (43%). For this reason, transparency declined (mean=0.13 m, range=0.08-0.21 m) largely in the downstream reach and thus, chlorophyll-a concentration showed low values (range: $4.2-8.6\;{\mu}g\;L^{-1}$), indicating a direct influence on primary productivity or algal growth by inorganic turbidity. In the 2nd survey, ISS averaged 4.0 mg $L^{-1}$ (3.3-4.8 mg $L^{-1}$), thus the ISS decreased by 14 fold, compared to the ISS in the 1st survey during the flooding, while organic suspended solids (OSS) values were greater than those of ISS, indicating a dominance of organic solids. This condition was similar to solid contents in the 3rd survey, but showed a large difference compared to the 4th survey during the growing season. Habitat health assessments, based on 10 metric habitat variables, showed that QHEI values were greatest in the growing season (May) than any other seasons and largest spatial variations occurred in the 2nd survey. Overall, dataset suggest that seasonal episodic flooding during the monsoon may largely contribute nutrient cycling and sediment contents in the Woopo Wetland and Topyung Stream.

Effects of Organic Loading Rates on Treatment Performance in a Polyvinylidene Media Based Fixed-Film Bioreactor

  • Ahmed, Zubair;Oh, Sang-Eun;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.238-242
    • /
    • 2009
  • This study investigated the effects of organic loading rates on simultaneous carbon and nitrogen removal in an innovative fixed-film aerobic bioreactor. The fixed-film bioreactor (FFB) was composed of a two-compartment aeration tank, in which a synthetic filamentous carrier was submerged as biofilm support media, and a settling tank which polyvinylidene media (Saran) was used as settling aid for suspended solids. Three different organic loading rates, ranging from 0.92-2.02 kg chemical oxygen demand/$m^3$/day were applied by varying hydraulic retention time (HRT). The total soluble organic carbon removal efficiencies were in the range of 90-97%. The removal efficiency of ammonia was found to be in the range of 70-84%. Total nitrogen removal efficiency was found to be in the range of 40-45%, which indicates that denitrification reactions occurred simultaneously in the attached biofilm on the fibrous media in the aeration tank. The settling performance of suspended solids was significantly improved due to the presence of Saran media in the settling compartment, even for a short HRT. The fixed-film aerobic bioreactor used in this study demonstrated efficient treatment efficiency even at higher organic loading rates and at short HRTs.

Geochemical Characteristics of Bottom Sediments of the Anyang River and the Influence on the Stream Water Contamination (안양천 바닥 퇴적물의 지구화학적 특성에 따른 하천수 오염영향)

  • 문지원
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.205-215
    • /
    • 2000
  • The Anyang River runs through highly industrialized area and joins the lower part of the Han River. loading out large amounts of potential pollutants. Attempts were made to understand geochemical behavior of trace elements in the stream sedimens collected from the bottom of the river and the stream water. Bottom sediments, suspended solids and stream waters were collected and analysed for the chemical and mineralogical composition. Heavy metals including Cr, Zn, Ni, and Co in the sediments were enriched appeared to reflect anthropogenic input. Pb, Cu, As were also enriched between several to 10 times , compared to background levels. Although some heavy metals were derived from anthropogeic input, geochemical associations seem to implyh much of the elements are originated from natural sources as well, mainly from granitic rocks . This is also supported by the mineralogical composition of the suspended solids, which are mainly composed of quartz, feldspar and mica. Most of the elements are associated with total carbon and clay sized fractions, with high values of correlation coefficient. Most of the elements are associated with total carbon and clay sized fractions , with high values of correlation coefficient. It was noteworthy that Hg was detected between 2 and 4 ppb in the stream water.

  • PDF