• 제목/요약/키워드: total superoxide dismutase

검색결과 640건 처리시간 0.032초

시험관내 및 생체내로 투여한 카드뮴이 랏트의 간, 신 및 고환조직 내의 Superoxide Radical, Superoxide Dismutase, Catalase 및 ATPase 활성도에 미치는 영향 (Effects of Cadmium on Superoxide Radical Superoxide Dismutase, Catalase and ATPase Activit in liver, Kidney and Testicle of Rats in Vitro and in Vivo)

  • 김성무;정규철
    • Journal of Preventive Medicine and Public Health
    • /
    • 제23권4호
    • /
    • pp.371-390
    • /
    • 1990
  • Production of free radicals of superoxide anion in tissues by cadmium, activities of superoxide dismutase and catalase to protect tissue damages caused by the free radicals and ATPase that plays an important role in energy metabolism at cellular level were investigated. Experiments in vivo were conducted with liver, kidney and testicle tissue homogenates of rats adding $0.05{\sim}0.50mM$ cadmium chloride, and in vivo experiments administering single dose of 5 mg of cadmium/kg of body weight in 0.1% cadmium chloride solution intraperitoneally 48 hours prior to evisceration. Production of superoxide radicals in liver and testicle increased with addition of cadmium in vitro, but not in kidney. In vivo experiments, however, superoxide radicals slightly increased in liver and kidney but not in testicle. Superoxide dismutase (Cu, Zn-SOD and Mn-SOD), catalase and ATPase (total, $Mg^{++}-\;&\;Na^+,\;K^+-$) activity decreased in the presence of cadimium in dose dependent manner. Reduction of these enzyme activities varied not only with dosage of cadmium but also with type of tissue and between in vitro and in vivo experiment.

  • PDF

치주질환 심도에 따른 치은조직내의 Superoxide Dismutase와 Catalase의 활성변화에 관한 연구 (ALTERATION OF SUPEROXIDE DISMUTASE-AND CATALASE-ACTIVITY IN HUMAN GINGIVAL TISSUES BY THE PERIODONTAL DISEASE SEVERITY)

  • 김병옥;권영혁;이만섭
    • Journal of Periodontal and Implant Science
    • /
    • 제24권1호
    • /
    • pp.39-49
    • /
    • 1994
  • It has been believed that antioxidant enzymes such as CuZn- and Mn-superoxide dismutase and catalase protect the tissue from damage resulting from the oxygen derived free radicals($O_2\;^-$, $H_2O_2$ and OH ). The purpose of this study was to investigate the relationship between activity of antioxidant enzymes including CuZn- and Mn- superoxide dismutase and catalase and inflammatory periodontal disease and periodontal parameters. For this study, the patients were classified into normal, gingivitis, adult periodontitis and rapidly progressive periodontitis, and then their papillary bleeding index(PBI) and probing depth were checked. Gingival tissues were surgically obtained from the patients during periodontal surgery, extraction, and clinical crown lengthening procedure. The activity of CuZn- and Mn- superoxide dismutase and catalase in the gingival tissues was measured by using UV-spectrophotometer by the same methods as Crapo et al. And Aebi did, respectively. The results were as follows : 1. CuZn- and Mn- and total-superoxide dismutase activity were significantly low in rapidly progressive periodontitis group in comparison to normal group (P<0.05). 2. In comparison of the antioxidant enzyme activity according to papillary bleeding index group(PBI), Mn-superoxide dismutase activity only was significantly lower in PBI 2, 3, and 4 groups than PBI 0 group(P<0.05). 3. Superoxide dismutase activity failed to show any significant difference according to probing depth. But significant]y high catalase activity was shown in deep pocket group (${\ge}7mm$)(P<0.05). In conclusion, these results suggest that the activity of Mn-superoxide dismutase among the antioxidant enzymes may reflect the inflammatory status of gingival tissue and that the decreased activity of superoxide dismutase may be one of responsibe factors for progression of rapidly progressive periodontitis.

  • PDF

Neurotoxicant (fenitrothion) alters superoxide dismutase, catalase, and peroxidase activities in Chironomus riparius Mg. (Diptera, Chironomidae) larvae

  • Park, Jin-Hee
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.67-71
    • /
    • 2001
  • Effects of exposure to a neurotoxicant, fenitrothion on antioxidant enzyme activities in Chironomus riparius Mg. (Diptera, Chironomidae) larvae were evaluated under laboratory conditions. Exposure to this chemical led to an increase of cupper, zinc type superoxide dismutase and manganese type superoxide dismutase activities and to a decrease of glutathion peroxidase activity. An activation of catalase was observed in the larvae exposed to high fenitrothion concentration. The response of superoxide dismutase was rapid and sensitive to low chemical concentrations, but changes in catalase, total peroxidase and glutathion peroxidase were less sensitive. In this study, antioxidant enzyme activities in Chironomus riparius larvae were identified as pertinent biomarkers for environmental monitoring.

  • PDF

Tricarboxylic acid회로를 차단한 흰쥐의 조직에서 Superoxide Dismutase에 관한 연구 (A Study on Superoxide Dismutase from various Tissue of the Tricarboxylic acid cycle blocked Rat)

  • 김일
    • 미생물학회지
    • /
    • 제23권1호
    • /
    • pp.69-76
    • /
    • 1985
  • $\beta$-fluoroethylacetate를 흰쥐의 복강에 투여하여 krebs cycle이 blocking된 것을 확인하고 이보 인해 각 조직 에서 생성되는 superoxide radical과 SOD의 할성도 변화를 관찰하였다. $\beta$-fluoroethylacetate을 투여한지 1- 3 시간 사이에 모든 장기에서 citrate의 축적농도가 가장 높았으며, 특히 heart외 spleen에서 12배 빛 20배로 가장 높았고, aconltase의 환성도는 한시간 후에 30-35%까지 억제되었고 시간의 경과에 따라 큰 변화는 없었다. 그리고 혈중 glucose의 함량은 계속증가되어 5 시간 후에 612mg/dl로 정상에 비해 1.6배 증가되었다. $\beta$-fluoroe thylacetate을 투여하고 1-2시간 후에 모든 장기에서 superoxide radical이 생성되었고 heart에서는 O. 26$\mu$mole/g호 가장 높았고, SOD의 총활성도는 1-3시간후에 활성이 가장 높았으며, heart에 있는 이 효소가 한 시간후 에 약 4 배로 가장 많이 증가되었다. Mn-SOD는 한시간 후에 모든 조직 에서 증가되였고 Kidney 가 가장 높은 활성도의 변화를 보였다. 이상의 결과로 흰쥐에서 Krebs cycle 이 차단되면 거의 모든 장기에서 superoxide radioal이 생성되며 Cu, Zn 및 Mn- SOD의 활성도가 모두 증가되고 특히 heart에시 가장 큰 변화를 보임을 알 수 있었다.

  • PDF

Production of Superoxide Dismutase by Deinococcus radiophilus

  • Yun, Young-Sun;Lee, Young-Nam
    • BMB Reports
    • /
    • 제36권3호
    • /
    • pp.282-287
    • /
    • 2003
  • The production of superoxide dismutase (SOD) varied in Deinococcus radiophilus, the UV resistant bacterium, depending upon different phases of growth, UV irradiation, and superoxide treatment. A gradual increase in total SOD activity occurred up to the stationary phases. The electrophoretic resolution of the SOD in cell extracts of D. radiophilus at each growth phase revealed the occurrence of MnSOD throughout the growth phases. The SOD profiles of D. radiophilus at the exponential phase received oxidative stress by the potassium superoxide treatment or UV irradiation also revealed the occurrence of a single SOD. However, these treatments caused an increase in SOD activity. The data strongly suggest that D. radiophilus has only one species of SOD as a constitutive enzyme, which seems to be a membrane-associated protein.

양파식이가 흰쥐에서 사염화탄소 독성에 미치는 영향 (Effects of Onion Diet on Carbon Tetrachloride Toxicity of Rats)

  • 이명렬;이병래;박평심
    • 한국식품영양과학회지
    • /
    • 제20권2호
    • /
    • pp.121-125
    • /
    • 1991
  • This study designs to investigate effects of onion diet on carbon tetrachloride toxicity of rats. Experiments were performed with week's feeding, body weight, food intake, ratio of orgen weight/dody weight, serum lipid levels, superoxide dismutase and catalase activity and malondialdehyde(MDA) content in liver and kidney were determined. The content of serum total cholesterol in each group were lower than those of control group(p<0.05), especially at onion juice treated group. Serum HDL-cholesterol level of CBB and CBJ groups was significantly lower than that of control group (p<0.05). Superoxide dismutase activities of liver and kidney were significantly increased by carbon tetrachloride treatment and decreased by onion feeding. MDA contents in liver and kidney of CCl4 treated rats were significantly decreased by boiled and fresh onion fed group, compared with CCl4 treated control group. This result suggested that onion diet has a protective effect of CCl4 induced hepatotoxicity and nephrotoxicity of rat.

  • PDF

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF

Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정 (Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase.)

  • 권순태;이명현;오세명;정도철;김길웅
    • 생명과학회지
    • /
    • 제14권4호
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.

Transcriptional Activation of CuIZn Superoxide Dismutase And Catalase Genes by Panaxadiol Ginsenosides Extracted From Panax ginseng

  • Chang, Mun-Seog;Yoo, Hae-Yong;Rho, Hyune-Mo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.63-70
    • /
    • 1998
  • Superoxide dismutase (SOD) and catalase constitute the first coordinated unit of defense against reactive oxygen species. Here, we examined the effect of ginseng saponins on the induction of SOD and catalase gene expression. To explore this possibility, the upstream regulatory promoter region of Cu/Zn superoxide dismutase (SODI) and catalase genes were linked to the chloramphenicol acetyl-transferase (CATI structural gene and introduced into human hepatoma HepG2 cells. Total saponin and panaxatriol did not activate the transcription of SODI and catalase genes but panaxadiol increased the transcription of these genes about 2-3 fold. Among the Panaxadiol ginsenosides, the Rb2 subtraction appeared to is a major induce of SODI and catalase genes. Using the deletion analyses and mobility shift assays, we showed that the 5051 gene was greatly activated by ginsenoside Rba through transcription factor AP2 binding sites and its induction. We also examined the effect of the content ratio of panaxadiol extracted from various compartment of ginseng on the transcription of 5031 gene. Saponin extract that contains 2.6-fold more PD than PT from the fine root Increased the SODI induction about 3-fold. These results suggest that the panaxadiol fraction and its ginsenosides could induce the antioxidant enzymes, which are important for maintaining cell viability by lowering level of oxygen radical generated from intracellular metabolism.

  • PDF

Antiproliferative Effect of Artemisia argyi Extract against J774A.1 Cells and Subcellular Superoxide Dismutase (SOD) Activity Changes

  • Lee, Tea-Eun;Park, Sie-Won;Min, Tae-Jin
    • BMB Reports
    • /
    • 제32권6호
    • /
    • pp.585-593
    • /
    • 1999
  • The water and methanol extracts of Artemisia argyi showed significant cytotoxicities against J774A.1 cells but not so much against normal leukocytes. The cytotoxicities were found to be dependent on the extract concentration and the incubation time. The concentration of water and methanol extracts inhibiting 50% of cell proliferation ($IC_{50}$) were estimated to be 44.2 mg/ml and 71.6 mg/ml, respectively. In the presence of Artemisia argyi water extract, total superoxide dismutase (CuZnSOD and MnSOD) activities of media, cytoplasmic and mitochondrial fractions of J774A.1 cells increased in accordance with cytotoxicity. MnSOD was found to be the main component of enhanced total SOD activities, particulary in the mitochondrial fraction. In contrast to SOD, catalase and glutathione peroxidase (GPx) were not found in any instance of the current investigation. In addition, substantial amount of $O_2^-$ appeared to be generated in the mitochondrial fraction under the influence of Artemisia argyi. All data put together, it is postulated that Artemisia argyi extracts seem to stimulate $O_2^-$ generation in mitochondria of J774A.1 cells with concomitant increases of SODs. Since $H_2O_2$, the reaction product of SOD on $O_2^-$, is known to be readily converted to very toxic $OH{\cdot}$ in the absence of catalase and/or GPx cooperation, toxicity derived from ROS such as $O_2^-$, $H_2O_2$, and $OH{\cdot}$ may be the main cause of necrosis and/or apoptosis of J774A.1 cells.

  • PDF