• Title/Summary/Keyword: total precipitable water

Search Result 42, Processing Time 0.025 seconds

Retrieval Biases Analysis on Estimation of GNSS Precipitable Water Vapor by Tropospheric Zenith Hydrostatic Models (GNSS 가강수량 추정시 건조 지연 모델에 의한 복원 정밀도 해석)

  • Nam, JinYong;Song, DongSeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.233-242
    • /
    • 2019
  • ZHD (Zenith Hydrostatic Delay) model is important parameter in estimating of GNSS (Global Navigation Satellite System) PWV (Precipitable Water Vapor) along with weighted mean temperature. The ZWD (Zenith Wet Delay) is tend to accumulate the ZHD error, so that biases from ZHD will be affected on the precision of GNSS PWV. In this paper, we compared the accuracy of GNSS PWV with radiosonde PWV using three ZHD models, such as Saastamoinen, Hopfield, and Black. Also, we adopted the KWMT (Korean Weighted Mean Temperature) model and the mean temperature which was observed by radiosonde on the retrieval processing of GNSS PWV. To this end, GNSS observation data during one year were processed to produce PWVs from a total of 5 GNSS permanent stations in Korea, and the GNSS PWVs were compared with radiosonde PWVs for the evaluating of biases. The PWV biases using mean temperature estimated by the KWMT model are smaller than radiosonde mean temperature. Also, we could confirm the result that the Saastamoinen ZHD which is most used in the GNSS meteorology is not valid in South Korea, because it cannot be exclude the possibility of biases by latitude or height of GNSS station.

Relationship between temporal variability of TPW and climate variables (가강수량의 변화패턴과 기후인자와의 상관성 분석)

  • Lee, Darae;Han, Kyung-Soo;Kwon, Chaeyoung;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Chang-suk
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Water vapor is main absorption factor of outgoing longwave radiation. So, it is essential to monitoring the changes in the amount of water vapor and to understanding the causes of such changes. In this study, we monitor temporal variability of Total Precipitable Water (TPW) which observed by satellite. Among climate variables, precipitation play an important part to analyze temporal variability of water vapor because it is produced by water vapor. And El $Ni{\tilde{n}}o$ is one of climate variables which appear regularly in comparison with the others. Through them, we analyze relationship between temporal variability of TPW and climate variable. In this study, we analyzed long-term change of TPW from Moderate-Resolution Imaging Spectroadiometer (MODIS) data and change of precipitation in middle area of Korea peninsula quantitatively. After these analysis, we compared relation of TPW and precipitation with El $Ni{\tilde{n}}o$. The aim of study is to research El $Ni{\tilde{n}}o$ has an impact on TPW and precipitation change in middle area of Korea peninsula. First of all, we calculated TPW and precipitation from time series analysis quantitatively, and anomaly analysis is performed to analyze their correlation. As a result, TPW and precipitation has correlation mostly but the part had inverse correlation was found. This was compared with El $Ni{\tilde{n}}o$ of anomaly results. As a result, TPW and precipitation had inverse correlation after El $Ni{\tilde{n}}o$ occurred. It was found that El $Ni{\tilde{n}}o$ have a decisive effect on change of TPW and precipitation.

Analysis of Uncertainty in Ocean Color Products by Water Vapor Vertical Profile (수증기 연직 분포에 의한 GOCI-II 해색 산출물 오차 분석)

  • Kyeong-Sang Lee;Sujung Bae;Eunkyung Lee;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2023
  • In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.

Accuracy Improvement of Precipitable Water Vapor Estimation by Precise GPS Analysis (GPS 관측데이터 정밀 해석을 통한 가강수량 추정 정확도 향상)

  • Song, Dong-Seob;Yun, Hong-Sic
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.27-30
    • /
    • 2007
  • The objective of this study is to improve an accuracy of PWV estimates using GPS in Korea. We determined a weighted mean temperature equation by a linear regression method based on 6 radiosonde meteorological observations, for a total 17,129 profiles, from 2003 to 2005. Weighted mean temperature, Tm, is a key parameter in the retrieval of atmospheric PWV from ground-based GPS measurements of zenith path delay. The accuracy of the GPS-derived PWV is proportional to the accuracy of Tm. And we applied the reduction of air Pressure to GPS station altitude. The reduction value of air pressure from mean sea level to GPS stations altitude is adopted a reverse sea level correction.

  • PDF

Temporal and Spatial Distributions of the Surface Solar Radiation by Spatial Resolutions on Korea Peninsula (한반도에서 해상도 변화에 따른 지표면 일사량의 시공간 분포)

  • Lee, Kyu-Tae;Zo, Il-Sung;Jee, Joon-Bum;Choi, Young-Jean
    • New & Renewable Energy
    • /
    • v.7 no.1
    • /
    • pp.22-28
    • /
    • 2011
  • The surface solar radiations were calculated and analyzed with spatial resolutions (4 km and 1 km) using by GWNU (Gangneung-Wonju National University) solar radiation model. The GWNU solar radiation model is used various data such as aerosol optical thickness, ozone amount, total precipitable water and cloud factor are retrieved from Moderate Resolution Imaging Spectrometer (MODIS), Ozone Monitoring Instrument (OMI), MTSAT-1R satellite data and output of the Regional Data Assimilation Prediction System(RDAPS) model by Korea Meteorological Administration (KMA), respectively. The differences of spatial resolutions were analyzed with input data (especially, cloud factor from MTSAT-1R satellite). And the Maximum solar radiation by GWNU model were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud factor.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

Estimation of the PAR Irradiance Ratio and Its Variability under Clear-sky Conditions at Ieodo in the East China Sea

  • Byun, Do-Seong;Cho, Yang-Ki
    • Ocean Science Journal
    • /
    • v.41 no.4
    • /
    • pp.235-244
    • /
    • 2006
  • Determining 'photosynthetically active radiation' (PAR) is a key part of calculating phytoplankton productivity in a biogeochemical model. We explore the daily and seasonal variability in the ratio of PAR irradiance to total irradiance that occurred at Ieodo Ocean Research Station (IORS) in the East China Sea under clear-sky conditions in 2004 using a simple radiative transfer model (RTM). Meteorological data observed at IORS and aerosol optical properties derived from Aerosol Robotic Network observations at Gosan are used for the RTM. Preliminary results suggest that the use of simple PAR irradiance-ratio values is appropriate in calculating phytoplankton productivity as follows: an average of $0.44\;({\pm}0.01)$ in January to an average of $0.48\;({\pm}0.01)$ in July, with average daily variabilities over these periods of about $0.016\;({\pm}0.008)$ and $0.025\;({\pm}0.008)$, respectively. The model experiments demonstrate that variations in the major controlling input parameters (i.e. solar zenith angle, precipitable water vapor and aerosol optical thickness) cause PAR irradiance ratio variation at daily and seasonal timescales. Further, increases (>0.012) in the PAR irradiance ratio just below the sea-surface are positively correlated with high solar zenith angles and strong wind stresses relative to those just above the sea-surface.

Development of Solar-Meteorological Resources Map using One-layer Solar Radiation Model Based on Satellites Data on Korean Peninsula (위성자료 기반의 단층태양복사모델을 이용한 한반도 태양-기상자원지도 개발)

  • Jee, Joonbum;Choi, Youngjean;Lee, Kyutae;Zo, Ilsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • The solar and meteorological resources map is calculated using by one-layer solar radiation model (GWNU model), satellites data and numerical model output on the Korean peninsula. The Meteorological input data to perform the GWNU model are retrieved aerosol optical thickness from MODIS (TERA/AQUA), total ozone amount from OMI (AURA), cloud fraction from geostationary satellites (MTSAT-1R) and temperature, pressure and total precipitable water from output of RDAPS (Regional Data Assimilation and Prediction System) and KLAPS (Korea Local Analysis and Prediction System) model operated by KMA (Korea Meteorological Administration). The model is carried out every hour using by the meteorological data (total ozone amount, aerosol optical thickness, temperature, pressure and cloud amount) and the basic data (surface albedo and DEM). And the result is analyzed the distribution in time and space and validated with 22 meteorological solar observations. The solar resources map is used to the solar energy-related industries and assessment of the potential resources for solar plant. The National Institute of Meteorological Research in KMA released $4km{\times}4km$ solar map in 2008 and updated solar map with $1km{\times}1km$ resolution and topological effect in 2010. The meteorological resources map homepage (http://www.greenmap.go.kr) is provided the various information and result for the meteorological-solar resources map.

  • PDF

Effect of Diet on Enzyme Profile, Biochemical Changes and In sacco Degradability of Feeds in the Rumen of Buffalo

  • Kamra, D.N.;Saha, Sudipto;Bhatt, Neeru;Chaudhary, L. C.;Agarwal, Neeta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.374-379
    • /
    • 2003
  • Four rumen fistulated Murrah buffaloes were used to study the effect of four diets differing in roughage to concentrate ratio on rumen biochemical changes, microbial enzyme profile and in sacco degradability of feed in a $4{\times}4$ Latin Square design. The animals were fed four diets consisting of 80:20, 70:30, 60:40 and 50:50 ratios of wheat straw and concentrate mixtures, respectively. Wheat straw and concentrate mixture were mixed with water (0.6 l/kg feed) and complete feed mixture was offered to the animals at 8:00 h and 16:00 h in two equal parts. The variation in pH of rumen liquor (difference of maximum and minimum during 0-8 h post feeding) increased with increasing level of concentrate mixture in the diet. There was no effect of diet composition on volatile fatty acids, total nitrogen and trichloro-acetic acid precipitable nitrogen in the rumen liquor, but ammonia nitrogen increased with increasing level of concentrate mixture in the ration. Major portions of all fibre degrading enzymes were present in the particulate material (PM) of the rumen contents, but protease was absent in PM fraction. The activities of micro-crystalline cellulase, acetyl esterase and protease increased with increase in the level of concentrate mixture, but the activities of other enzymes (carboxymethylcellulase, filter paper degrading activity, xylanase, $\beta$-glucosidase and $\beta$-xylosidase) were not affected. The in sacco degradability and effective degradability of feeds increased with increasing level of concentrate mixture in the ration.

Thermodynamic Characteristics Associated with Localized Torrential Rainfall Events in the Middle West Region of Korean Peninsula (한반도 중서부 국지성 집중호우와 관련된 열역학적 특성)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.457-470
    • /
    • 2014
  • Thermodynamic conditions related with localized torrential rainfall in the middle west region of Korean peninsula are examined using radar rain rate and radiosonde observational data. Localized torrential rainfall events in this study are defined by three criteria base on 1) any one of Automated Synoptic Observing System (ASOS) hourly rainfall exceeds $30mmhr^{-1}$ around Osan, 2) the rain (> $1mmhr^{-1}$) area estimated from radar reflectivity is less than $20,000km^2$, and 3) the rain (> $10mmhr^{-1}$) cell is detected clearly and duration is short than 24 hr. As a result, 13 cases were selected during the summer season of 10 years (2004-13). It was found that the duration, the maximum rain area, and the maximum volumetric rain rate of convective cells (> $30mmhr^{-1}$) are less than 9hr, smaller than $1,000km^2$, and $15,000{\sim}60,000m^3s^{-1}$ in these cases. And a majority of cases shows the following thermodynamic characteristics: 1) Convective Available Potential Energy (CAPE) > $800Jkg^{-1}$, 2) Convective Inhibition (CIN) < $40Jkg^{-1}$, 3) Total Precipitable Water (TPW) ${\approx}$ 55 mm, and 4) Storm Relative Helicity (SRH) < $120m^2s^{-2}$. These cases mostly occurred in the afternoon. These thermodynamic conditions indicated that these cases were caused by strong atmospheric instability, lifting to overcome CIN, and sufficient moisture. The localized torrential rainfall occurred with deep moisture convection result from the instability caused by convective heating.