• Title/Summary/Keyword: total potential energy

Search Result 588, Processing Time 0.032 seconds

Fundamental Studies on the Characteristics of the Surface Electrokinetic Behavior of Particulate Matter as an Extensive Property (입자성 물질의 크기성질로서의 표면 전기적 특성 규명에 대한 기초연구)

  • O, Se-Jin;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.581-586
    • /
    • 2010
  • Generally, electrokinetic potential has been considered as an intensive property. In other words, electrokinetic potential is not affected by the amount of particulate matter. Montmorillonite, one of essential inorganic matter, was chosen to measure electrokinetic potential. The result of electrokinetic potential measuring experiment showed that the value observed to decrease as the amount of montmorillonite clay increased. This is due to the fact that total ions that adsorbed per unit mass were decreased as the amount of montmorillonite was increased. As a result, electrokinetic potential is considered as an extensive property. By using these results, total interaction energy of suspension was also checked, and revealed that total interaction energy was decreased as the amount of montmorillonite increased.

Memory of Initial States in Scattering over Attractive Potential Energy Surface for Atom-Diatom Collisions

  • Seung-Ho Choi;Hyung-Rae Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.423-429
    • /
    • 1991
  • Global and local memory functions, defined by Quack and Troe, were calculated for the rotationally inelastic collision of O + SO(v, j)→ [O--S--O]→O + SO(v, j'). It is seen to decrease steadily as total energy increases. Distribution of scattering cross section over product rotational states also shows the decreasing memory of initial state as total energy is increased. These results are interpreted in terms of energy scrambling at high energy due to the availability of more phase space and also the influence of strong dynamical constraints.

Variation of the Electrokinetic Potential and Surface Energy Profile of a Binary Mixture Dispersion with Mixing Ratio (이종혼합부유물질의 양에 따른 electrokinetic potential 및 surface energy profile의 변화 양상)

  • Kim, Hee-Jin;Jeong, Hye-Won;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.115-120
    • /
    • 2012
  • Different colloidal particles generally co-exist in the water and wastewater. Thus, there needs to identify practical electrokinetic characteristics of the particles, comparing with the case when each colloidal material is independently distributed. In this study, changes of overall zeta potential was examined through mixed dispersions of $TiO_{2}$ and $MnO_{2}$. The mixing ratios were classified into 3-type in order to distinguish the effects of the proportions of each particle from those of total concentration in colloidal suspensions. The types are single colloidal dispersions of $TiO_{2}$ and $MnO_{2}$ (1:0, 0:1), mixed dispersions at different ratios (0.75:0.25, 0.5:0.5, 0.25:0.75), and a mixed dispersion with doubled concentration (1:1), respectively. It showed that the overall variation of zeta potential as a function of pH was intensified in a colloidal dispersion with the ratio of 1:1. It was concerned that the double action of ion would contribute to this result. On the one hand, the zeta potentials of each colloidal dispersion commonly decreased at the state of strong acid and base under the influence of compression of the electric double layer. The changing patterns were also considered through calculating total interaction energy between colloidal particles based on DLVO theory and measuring turbidity of the colloidal dispersions.

A Study on the Utilization of potential heat sources for Heat Pumps to District Heating System in Urban (도시 내 지역난방 Heat Pump용 잠재열원 이용에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.841-855
    • /
    • 2018
  • The purpose of this study is to estimate the available potential heat source for heat pump in the district heating supply area in the city. Unused energy potentials were estimated and integrated based on open source based data. In particular, geographical spatial analysis of recoverable heat energy density and heat demand in the heat source area of large retailers and public sauna facilities in the DH network located in the southern part of the metropolitan area (Pyeongtaek-si) was conducted. As a result of the study, the DH network area had a total potential energy of 1,741.7 toe/year for the two heat sources of large retailers and public saunas. It is estimated that 1,006.9 toe/year, which is 57.8% of the total, can be linked to the district heating. The large retailers showed a positive correlation with the floor area and energy use of 0.4937. The recoverable energy intensity was estimated to be $0.0017toe/m^2$ per unit area and $0.0069tCO_2/m^2$ for greenhouse gas emissions. In addition, public saunas were analyzed by comparing the empirical case with the theoretical calculation, and it was estimated that energy conservation estimate of 80% was $0.0315toe/m^2$ per bath area and $0.1183tCO_2/m^2$ for greenhouse gas emissions. The total potential energy amount of this area was positively correlated with the heat demand of apartment house by administrative district, and it was confirmed that it had a relatively high potential energy especially in traffic and commercial center.

Pre-service Chemistry Teachers’ Understanding of the Potential Energy Curve (퍼텐셜 에너지 곡선에 대한 예비 화학 교사들의 이해 조사)

  • Park, Jong-Yoon;Kim, Eun-Kyoung
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.6
    • /
    • pp.508-519
    • /
    • 2015
  • In this study, the pre-service chemistry teachers’ understanding of potential energy curve was investigated. The subjects were 24 junior students and 26 senior students studying chemistry education in a college of education. A concept questionnaire consisted of thought experiments with different initial conditions was developed to survey the pre-service teachers’ conceptions of potential energy curve. The survey results showed that the pre-service chemistry teachers had difficulties to accept the negative values for potential energy and total energy. And they knew the mechanical energy conservation but they could not apply it properly to the thought experiment situations given in the questionnaire. Also they had the knowledge about the direction of force exerted between the two balls, but many of them believed that the balls would stop moving at the bottom of potential energy curve well. In addition, it was discovered that few pre-service teachers could relate the thought experiments to the chemical bonding, the liquefaction of gas, and the molecular vibration.

Kinetic Model on the Vacuum Deposition (眞空 蒸着에 관한 速度論的 모델)

  • Kim, Dae-Soo
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.2
    • /
    • pp.51-58
    • /
    • 1986
  • A theoretical model was proposed to predict the rate of particles impinging on the negatively biased substrate and the total kinetic energy per unit time. The model takes into an account of kinetic theory based on Maxwell statistics and elementary plasma theory, incorporated with Hertz-Knudsen's evaporation theory. It is found that as the bias potential increases the ion flux and kinetic energy increases to a value above which the effect of potential is insignificant.

  • PDF

The Indoor Environmental Quality Improving and Energy Saving Potential of Phase-Change Material Integrated Facades for High-Rise Office Buildings in Shanghai

  • Jin, Qian
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • The conflict between indoor environmental quality and energy consumption has become an unneglectable problem for highrise office buildings, where occupants' productivity is highly affected by their working environment. An effective Façade, therefore, should play the role of an active building skin by adapting to the ever-changing external environment and internal requirements. This paper explores the energy-saving and indoor environment-improving potential of a phase-change material (PCM) integrated Façade. Building performance simulations, combined with parametric study and sensitivity analysis, are adopted in this research. The result quantifies the potential of a PCM-integrated Façade with different configurations and PCM properties, taking as an example a south-oriented typical office room in Shanghai. It is found that a melting temperature of around $22^{\circ}C$ for the PCM layer is optimal. Compared to a conventional Façade, a PCM-integrated Façade effectively reduces total energy use, peak heating/cooling load, and operative temperature fluctuation during the periods of May-July and November-December.

Analysis of Biomass Energy Potential around Major Cities in South Korea (국내 주요도시 주변의 바이오매스 에너지 잠재량 분석)

  • Kook, Jin Woo;Lee, See Hoon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.178-183
    • /
    • 2015
  • Biomass is recognized as one of important renewable energy sources because it can be converted and used as solid, gaseous and liquid forms. Also, biomass is one of promising ways to solve the depletion of fossil fuels and global warming problems. The information about local biomass energy potentials and space energy densities can be powerfully utilized to determine the scale of biomass energy conversion plant and to analyze economic effects. The latest data on domestic biomass resources, such as agricultural, forestry, livestock and urban wastes, were collected from various government organizations and institutes and were analyzed to calculate biomass energy potential and space energy density. As local areas in South Korea to collect biomass resources increased, energy potentials increased, but space energy densities of total biomass decreased.

Prospect of Vietnam's New and Renewable Energy

  • DinhLong, Do;Kim, Su-Duk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.212-219
    • /
    • 2009
  • Vietnam is endowed with multiform new and renewable energy resources. However, potential of new and renewable resources in Vietnam has not been completely assessed. Although the Government has embarked several programs to expand the use of these resources, the share of new and renewable energy in total commercial energy is still insignificant. The purpose of this study is to summarize potential and current development status as well as the prospect of new and renewable energy. Identification of barriers that are the hindrances in the development of new and renewable energy would suggest measures to future commercialization of new and renewable energy.

  • PDF