• 제목/요약/키워드: total non-structural carbon

검색결과 23건 처리시간 0.02초

Large post-buckling behavior of Timoshenko beams under axial compression loads

  • Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.955-971
    • /
    • 2014
  • Large post-buckling behavior of Timoshenko beams subjected to non-follower axial compression loads are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. Two types of support conditions for the beams are considered. In the case of beams subjected to compression loads, load rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of lower-Carbon Steel. In the study, the relationships between deflections, rotational angles, critical buckling loads, post-buckling configuration, Cauchy stress of the beams and load rising are illustrated in detail in post-buckling case.

Ozone Damage Assessment of Aspen at the Five Sites in Seoul Using a Computer Simulation Model of Individual Tree Growth, TREGRO

  • Yun, Sung-Chul;John A. Laurence;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • 제15권4호
    • /
    • pp.210-216
    • /
    • 1999
  • TREGRO, a computer simulation model of individual tree growth, was applied to estimate ozone ($\textrm{O}_3$) effects on aspen(Populus tremuloides) growth under ambient and 1.7 times ambient $\textrm{O}_3$ of Seoul in 1996. The three highest $\textrm{O}_3$ (Kuui-dong, Ssangmun-dong, Sungsoo-dong) and the two lowest $\textrm{O}_3$ sites (Mapo-dong, Namgajwa-dong) were evaluated. The current ambient $\textrm{O}_3$ did not affect aspen growth compared to simulation without $\textrm{O}_3$. The only effect was 6.6 percent of total assimilated carbonloss at Ssangmun-dong where the level of $\textrm{O}_3$ was greatest among the 21 sites examined. Decrease as much as 50 percent of total carbon gain was calculated at 1.7 times ambient $\textrm{O}_3$ of the three highest sites. The carbon loss by $\textrm{O}_3$ came from biomass of tissues and total nonstructural cabron (TNC) such as starch and sugar. The most sensitive fraction was TNC and the next was root biomass. Foliage mass was not affected by $\textrm{O}_3$. Structural biomass loss was at best 1 to 3 percent at 1.7 times ambient $\textrm{O}_3$ at the two lowest sites. The daily carbon simulation was affected by $\textrm{O}_3$ mainly during Growth Period 4 (Jul. 21-Oct. 26). Correlations between site, dose, and the simulated responses of aspen (tissue biomass, TNC, respiration, and senescence) ranged from -0.703 to -0.973 depending on the plant responses. The ozone effects on poplar in Seoul are not severe currently, but are probably measurable at Ssangmun-dong. However, severe $\textrm{O}_3$ effects on biomass would occur if $\textrm{O}_3$ levels increase to 1.7 times ambient $\textrm{O}_3$ in Seoul. In addition, v could weaken the trees thus increasing susceptibility to pathogens or insects.

  • PDF

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제76권1호
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

Experimental and numerical analysis of composite beams strengthened by CFRP laminates in hogging moment region

  • El-Shihy, A.M.;Fawzy, H.M.;Mustafa, S.A.;El-Zohairy, A.A.
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.281-295
    • /
    • 2010
  • An experimental and a non linear finite element investigation on the behavior of steel-concrete composite beams stiffened in hogging moment region with Carbon Fiber Reinforced Plastics (CFRP) sheets is presented in this paper. A total of five specimens were tested under two-point loads. Three of the composite beams included concrete slab while the other two beams had composite slabs. The stiffening was achieved by attaching CFRP sheets to the concrete surface at the position of negative bending moment. The suggested CFRP sheets arrangement enhanced the overall beam behavior and increased the composite beam capacity. Valuable parametric study was conducted using a three dimensional finite element model using ANSYS program. Both geometrical and material nonlinearity were included. The studied parameters included CFRP sheet arrangement, concrete strength and degree of shear connection.

3미터급 카본 카약의 저항성능 및 구조 안전성 연구 (Resistance and Structural Safety of a 3M Carbon Fibier-based Kayak)

  • 서광철;이경우;박주신
    • 해양환경안전학회지
    • /
    • 제25권4호
    • /
    • pp.482-488
    • /
    • 2019
  • 최근 수상 레저 사업장과 레저기구의 개수는 지속해서 성장하고 있다. 수상레저기구 중에서도 카약과 카누의 보급률이 크게 증가하고 있다. 기존에는 주로 FRP 재료를 사용하여 제작하였으나, 지구온난화, 천연자원 고갈 등의 문제로 인해 청정에너지 및 신재생 에너지에 대한 필요성이 대두됨에 따라 탄소섬유에 대한 수요도 빠르게 증가하고 있다. 본 연구에서는 이러한 사회적인 변화 의식에 부합하기 위하여, 탄소섬유를 적용한 보급형 카약을 설계하고, 제품의 신뢰성을 검증하기 위하여 저항성능 및 구조 안전성 평가를 수행하였다. 속도 변화에 따른 압력저항과 마찰저항 변화를 검토하였으며, 속도 2.6 m/s 이상에서는 압력저항이 크게 증가하면서 전체저항이 커지는 현상이 발생한다. 현재 카약 구조는 운용 시 고려할 수 있는 설계하중을 고려 시, 충분한 안전율을 갖고 있음을 확인하였다.

탄소섬유보강폴리머의 인장시험시 변형으로부터 환산한 변형률 응답에 대한 연구 (Study on Strain Response Converted from Deformation in Tensile Test of Carbon Fiber Reinforced Polymers (CFRP))

  • 김윤곤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권4호
    • /
    • pp.137-144
    • /
    • 2019
  • 취성재료인 탄소섬유보강폴리머(CFRP)의 시편시험에서 총변형량과 유효길이로서 유도되는 환산변형률을 도입하고, 환산변형률의 장점을 기술하였다. 일반적으로 재료의 인장물성을 결정하기 위해 스트레인 게이지 측정값을 사용하지만, 취성특성을 가지는 CFRP에서는 항상 유효한 것은 아니다. 그 이유는 취성재료에서는 응력재분배를 할 수 없으며, 스트레인 게이지의 측정값은 국부거동만을 나타기 때문이다. 따라서 환산변형률은 취성재료의 인장인장특성의 평균값을 측정하고 변형률과 측정값을 검증하는 보조지표로서 효과적으로 사용될 수 있다. 또한 환산변형률은 1) 제작 오차(편차) 와 세팅 오차(정렬 불량)에 의해 발생하는 초기 내부 변형률에 기인한 영향과 2) 불균일 변형분포로 인한 부분파단 이후 거동을 명확히 가시화하는 장점이 있다.

저장탄수화물과 질소의 월동성과 재생활력에 대한 이용성 I. 저온처리가 유채 ( Brassica napus L. ) 의 생육 , 질소 및 비구조성 탄수화물의 총 함량에 미치는 영향 (Partitioning of Carbon and Nitrogen Reserves During Winter Adaptation and Spring Regrowth I. Effects of temperature on growth, total content of nitrogen and non-structureal carbohydrate in forage rape(Brassica napus L.))

  • 김병호;김태환;김기원;정우진;전해열
    • 한국초지조사료학회지
    • /
    • 제15권3호
    • /
    • pp.157-163
    • /
    • 1995
  • The objective of this study is to obtain the basic data for investigating the effects of organic reserves on winter survial or regrowth yield. Dry matter, nitrogen and non-structural carbohydrate content of plants grown under $5^{\circ}C$ or $20^{\circ}C$ of culture temperature during 25 days were investigated. The dry matter content of leaves and roots were significantly reduced under $5^{\circ}C$ compared with $20^{\circ}C$culture condition. Comparing with the dry matter per plant under $20^{\circ}C$, those in leaves and roots under $5^{\circ}C$ decreased to 25% and 10%, respectively, after 25 days of temperature treatment. Total nitrogen content in leaves under $20^{\circ}C$ and $5^{\circ}C$ increased to 68% and 39% compared to the initial lenel(day O), respectively, during 25 days after temperature treatment, Nitrogen content in roots highly increased under 5 C while there was a little change under $20^{\circ}C$ condition. The nitrogen contents in roots under $5^{\circ}C$ and $20^{\circ}C$ were 39.0 and 30.8mgJg DM, respectively, after 25 days of temperature treatment. Total contents of soluble carbohydrate in both leaves and roots under $5^{\circ}C$ were higher than those under $20^{\circ}C$ condition. After 25 days of temperature treatment under$5^{\circ}C$ , their contents in leaves and roots were 1.4 and 2.0 times higher than those of under $20^{\circ}C$ condition. Stach atent in roots under $20^{\circ}C$ was less changed, while thatof under $5^{\circ}C$ greatly increased from 64.8 to 178.7mglg DM duling 25 days. 'Ihese results clearly showed that an accumulation of both nitrogen and non-structural carbohydrate in the plants occured under low temperature condition.e condition.

  • PDF

Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs

  • Kim, Naeun;Kim, Young Hee;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1067-1081
    • /
    • 2015
  • This study investigates structural and mechanical behaviors of RC (Reinforced concrete) beams strengthened with tapered CFRP (Carbon fiber reinforced polymer) sheets having various configurations. Toward this goal, experiments are performed on RC beams strengthened with four layers of CFRP sheets and each layer of the CFRP is prepared to have different length. Experimental results show that tapered CFRPs have better strengthening effect than non-tapered CFRP sheets and maximum loads of the beams with tapered CFRPs are governed by the length of first CFRP layer rather than total length of CFRP layers. In addition, analyses are performed using FE (Finite Element) models including cohesive elements to predict debonding behaviors between FRP and concrete elements. The predicted results from the FE models show good agreement with the experimental results.

Structural properties of vacancy defects, dislocations, and edges in graphene

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Kim, Young-Kuk;Ihm, Ji-Soon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.428-429
    • /
    • 2011
  • Recently, we performed ab initio total energy calculation and tight-binding molecular dynamics (TBMD) simulation to study structures and the reconstruction of native defects in graphene. In the previous study, we predicted by TBMD simulation that a double vacancy in graphene is reconstructed into a 555-777 composed of triple pentagons and triple heptagons [1]. The structural change from pentagon-octagon-pentagon (5-8-5) to 555-777 has been confirmed by recent experiments [2,3] and the detail of the reconstruction process is carefully studied by ab initio calculation. Pentagon-heptagon (5-7) pairs are also found to play an important role in the reconstruction of vacancy in graphene and single wall carbon nanotube [4]. In the TBMD simulation of graphene nanoribbon (GNR), we found the evaporation of carbon atoms from both the zigzag and armchair edges is preceded by the formation of heptagon rings, which serve as a gateway for carbon atoms to escape. In the simulation for a GNR armchair-zigzag-armchair junction, carbon atoms are evaporated row-by-row from the outermost row of the zigzag edge [5], which is in excellent agreement with recent experiments [2, 6]. We also present the recent results on the formation and development of dislocation in graphene. It is found that the coalescence of 5-7 pairs with vacancy defects develops dislocation in graphene and induces the separation of two 5-7 pairs. Our TBMD simulations also show that adatoms are ejected and evaporated from graphene surface due to large strain around 5-7 pairs. It is observed that an adatom wanders on the graphene surface and helps non-hexagonal rings change into stable hexagonal rings before its evaporation.

  • PDF

FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석 (Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet)

  • 하상수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권4호
    • /
    • pp.100-107
    • /
    • 2018
  • 본 연구의 목적은 철근콘크리트 휨 부재에 탄소섬유시트, 유리섬유시트, PET(polyethylene terephthalate) 섬유 등을 이용하여 보강했을 때, 보강재 종류, 보강재 물성, 보강량 등에 따른 보강효과를 파악하는 것이다. 변수별 보강효과를 파악하기 위해 가상의 휨부재를 기준실험체로 선정하여, 기준실험체에 대해 항복단면과 극한단면일 때의 모멘트-곡률 관계를 파악하였다. 보강하지 않은 기준실험체에 보강재 종류, 보강재 물성, 보강량 등 다양한 변수를 적용하여 총 11개의 실험체의 모멘트-곡률 곡선을 비교하였다. 분석 결과, 보강하지 않은 실험체에 비해 보강한 실험체의 휨강도는 높게 나타났다. 그러나 연성에 대해서는 보강하지 않은 기준실험체가 가장 우수한 것으로 나타났다. 변수별 휨 보강효과는 보강량이 많고, 파괴시 재료강도가 높을수록 우수하게 나타났으며, 연성효과는 보강재의 파괴시 변형률이 높을수록 우수한 것으로 나타났다. 손상 전과 손상 후의 보강효과에 대해서는 휨보강 효과와 연성효과 모두 10% 이내로 미미하게 나타나 손상상태에 있더라도 온전한 상태로 해석해도 큰 차이가 없을 것으로 판단된다.