• Title/Summary/Keyword: total nitrogen removal

Search Result 379, Processing Time 0.026 seconds

A Study on the Biological Organic, Nitrogen and Phosphorus Removal in Sequencing Batch Biofilm Reactor (연속회분식 생물막 반응기(Sequencing Batch Biofilm Reactor)를 이용한 수중의 유기물, 질소 및 인의 동시 제거에 관한 연구)

  • 박민정;김동석
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.84-91
    • /
    • 2004
  • Biological nutrient removal(BNR) from wastewater was performed by adopting various process configurations. The simultaneous biological organics, phosphorus and nitrogen removal of synthetic wastewater was investigated in a sequencing batch biofilm reactor (SBBR). The other reactor was operating as a reference, without biofilm being added. The cycling time in SBR and SBBR was adjusted at 12 hours and then certainly included anaerobic and aerobic conditions. Both systems has been operated with a stable total organic carbon(TOC), nitrogen and phosphorus removal performance for over 90 days. Average removal efficiencies of TOC and total nitrogen were 83% and 95%, respectively. The nitrification rate in SBR was higher than that in SBBR. On the contrary, the denitrification rate in SBBR was higher than that in SBR. The phosphorus release was occurred in SBBR, however, not in SBR because of the inhibition effect of NO$_3$$^{[-10]}$ .

Simulated Nitrogen Removal for Double-Layered PVA/Alginate Structure for Autotrophic Single-Stage Nitrogen Removal (2중 구조의 PVA/alginate 겔 비드에서의 독립영양 단일공정 질소제거효율 시뮬레이션)

  • Bae, Hyokwon
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.171-176
    • /
    • 2022
  • Recently, an autotrophic single-stage nitrogen removal (ASSNR) process based on the anaerobic ammonium oxidation (ANAMMOX) reaction has been proven as an economical ammonia treatment. It is highly evident that double-layered gel beads are a promising alternative to the natural biofilm for ASSNR because of the high mechanical strength of poly(vinyl alcohol) (PVA)/alginate structure and efficient protection of ANAMMOX bacteria from dissolved oxygen (DO) due to the thick outer layer. However, the thick outer layer results in severe mass transport limitation and consequent lowered bacterial activity. Therefore, the effects of the thickness of the outer layer on the overall reaction rate were tested in the biofilm model using AQUASIM for ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB) and ANAMMOX bacteria. A thickness of 0.5~1.0 mm is preferred for the maximum total nitrogen (TN) removal. In addition, a DO of 0.5 mg/L resulted in the best total nitrogen removal. A higher DO induces NOB activity and consequent lower TN removal efficiency. The optimal density of AO B and NO B density was 1~10% for a 10% ANAMMOX bacterial in the double-layered PVA/alginate gel beads. The real effects of operating parameters of the thickness of the outer layer, DO and concentrations of biomass balance should be intensively investigated in the controlled experiments in batch and continuous modes.

Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process (완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향)

  • Kim, Jun-myoung;Lee, Sang-min;Lim, Kyeong-ho;Kim, Il-gyou;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.273-279
    • /
    • 2008
  • Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

Treatment of Piggery Wastewater by Anoxic-Oxic Biofilm Process (준혐기-호기 생물막 공정을 이용한 돈사폐수 처리)

  • 임재명;한동준
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • This research aims to develop biofilm process for the nutrient removal of piggery wastewater. The developed process is the four stage anoxic-oxic biofilm process with recirculation of the final effluent. In summery, the results are as follows: 1. Nitrification in the piggery wastewater built up nitrite because of the high strength ammonia nitrogen. The nitrification of nitrobacter by free ammonia was inhibited in the total ammonia nitrogen loading rate with more than 0.2 kgNH$_{3}$-N/m$^{3}$·d. 2. The maximal total ammonia nitrogen removal rate was obtained at 22$\circ $C and without being affected by the loading rate. But total oxidized nitrogen production rate was largely affected by loading rate. 3. Autooxidation by the organic limit was a cause of the phosphorus release in the aerobic biofilm process. But the phosphorus removal rate was 90 percent less than the influent phosphorus volumetric loading rate of above 0.1 kgP/m$^{3}$·d. Therefore, the phosphorus removal necessarily accompanied the influent loading rate. 4. On the anoxic-oxic BF process, the total average COD mass balance was approximately 67.6 percent. Under this condition, the COD mass removal showed that the cell synthesis and metabolism in aerobic reactor was 42.8 percent and that the denitrification in anoxic reactor was 10.7 percent, respectively.

  • PDF

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent (생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성)

  • Song, Young-Chae;Oh, Gyung-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

Serial Particle Size Fractionation and Water Quality in a Recirculating Aquaculture System for Eel

  • Lee, Jin-Hwan
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2010
  • The effects of suspended solids size on culture water quality were determined in a commercial recirculating aquaculture system (RAS) for Japanese eel, Anguilla japonica. The particulate phase of the culture water was serially divided into six size fractions using 300, 200, 100, 75, 45, and 26 ${\mu}m$ pore size stainless sieves. The total, dissolved, and particulate nitrogen and phosphorus, and suspended solids for each fraction were determined. The concentration ranges in the fractions were: total nitrogen, 164-148 mg $L^{-1}$; total phosphorus, 20.4-15.5 mg $L^{-1}$; and total suspended solids, 8.1-6.1 mg $L^{-1}$. The concentration of total nitrogen and total phosphorus decreased significantly (P<0.05) with a 26 ${\mu}m$ and 200 ${\mu}m$ filter pore size, respectively. Nutrients from dissolved organic substances were much higher than from particulates. Analysis of particle size fractionation and its effects on water quality is useful to estimate removal efficiencies of a commercial effluent screening device for solid management and development of solid removal systems.

Modeling for Biological Nitrogen Removal in Step-Feed Process (Step-Feed 공정에서의 생물학적 질소제거 Modeling)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.62-70
    • /
    • 2005
  • Step-feed process for biological nitrogen removal were analyzed numerically for the each unit and final total nitrogen(TN) effluent by water quality management(WQM) model and the results were compared data from these wastewater treatment plants. No bugs and logic error were occurred during simulation work. All of the simulation results tried to two times were obtained and both results were almost same as this model has become good reappearance. It was concluded that most of nitrogen removal occurred in the first oxic tank. Thus the controlling of the first anoxic tank may be more important in term of nitrogen removal. Also each unit of simulation result was kept good relationship with that of measured data. Accordingly this WQM model has good reliance. Finally, WQM model can predict final TN effluent within ${\pm}6.0mg/{\ell}$.

Removal of Suspended Solids and Nitrification by Floating Bead Filter in Recirculating Aquaculture System (Floating Bead Filter에 의한 순환여과식 양식장의 부유고형물 제거와 질산화)

  • KIM Byong Jin;KIM Sung Koo;SUH Kuen Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-169
    • /
    • 2003
  • The floating bead filter was tested for treatment of aquacultural water in a pilot-scale recirculating aquaculture system. Performance of floating bead filter on the removal of total suspended solids (TSS) and the treatment of nitrogen sourer such as total ammonia nitrogen (TAN), nitrite nitrogen and nitrate nitrogen were evaluated. The system was stocked with Nile tilapia at an initial rearing densities of $5\%\;and\;7\%$ over 30 days. The average TSS removal rates were $43.0\;g/m^2{\cdot}day\;and\;39.5\;g/m^2{\cdot}day$ for rearing density of $5\%\;and\;7\%$, respectively. As rearing density increased from $5\%\;to\;7\%$. the TAN removal efficiency decreased from $22.0\%\;to\;17.7\%$. At the rearing densities of $5\%\;and\;7\%$, the average TAN removal rates and removal efficiencies were $38.8\;g/m^2{\cdot}day,\;15.6\%\;and\;37.8\;g/m^2{\cdot}day.\;17.7\%,$ respectively. The average TAN removal rate was $37.8-38.8\;g/m^3{\cdot}day.$ The oxygen consumption by floating bead filter was higher than theoretical oxygen consumption rate by nitrification.

Practical Demonstration of YPNR Process to Elimination the Total Nitrogen Ingredient in Sewage (하수 내 총질소 성분 제거를 위한 YPNR 공정의 실증 연구)

  • Lim, Eun-Tae;Jeong, Gwi-Taek;Bhang, Sung-Hun;Kim, Yong-Un;Park, Jae-Hee;Park, Seok-Hwan;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.291-295
    • /
    • 2009
  • This study performed verification experiment for the removal of total nitrogen in sewage from a Town M village sewage treatment plant using YPNR processes. The total nitrogen discharged after the denitrification process was maintained at a level of 8-15 mg/L, which results in the total nitrogen removal efficiency above 68% on average. The total nitrogen components in discharged water consisted of 16% of ammonia nitrogen, 6% of nitrite nitrogen, and 77% of nitrate nitrogen, which reaches a 95% nitrification efficiency. Hence, the YPNR advanced treatment process used in this study can be successfully applied to sewage treatment.