• Title/Summary/Keyword: total nitrogen removal

Search Result 379, Processing Time 0.029 seconds

Assessment of Seasonal Variations in the Treatment Efficiency of Constructed Wetlands

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Choi, Hyeseon;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.231-231
    • /
    • 2020
  • Unlike conventional treatment technologies, the performance of nature-based facilities were susceptible to seasonal changes and climatological variabilities. This study evaluated the effects of seasonal variables on the treatment performance of constructed wetlands (CWs). Two CWs treating runoff and discharge from agricultural and livestock areas were monitored to determine the efficiency of the systems in reducing particulates, organics, and nutrients in the influent. For all four seasons, the mean effluent suspended solids concentration in the agricultural CW (ACW) increased by -2% to -39%. The occurrence of algal blooms in the system during summer and fall seasons resulted to the greatest increase in the amount of suspended materials in the overlying water. unlike ACW, the livestock CW (LCW) performed efficiently throughout the year, with mean suspended solids removal amounting to 61% to 68%. Algal blooms were still present in LCW seasonally; however, the constant inflow in the system limited the proliferation of phytoplankton through continuous flushing. The total nitrogen (TN) and total phosphorus (TP) removal efficiencies in ACW were higher during the summer (21% to 25%) and fall (8% to 21%) seasons since phytoplankton utilize nitrogen and phosphorus during the early stages of phytoplankton blooms. In the case of LCW, the most efficient reduction in TN (24%) and TP (54%) concentrations were also noted in summer, which can be attributed to the favorable environmental conditions for microbial activities. The mean removal of organics in ACW was lowest during summer season (-52% to 35%), wherein the onset of algal decay triggered a relative increase in organic matter and stimulate bacterial growth. The removal of organics in LCW was highest (54 % to 55%) during the fall and winter seasons since low water temperatures may limit the persistence of various algal species. Variations in environmental conditions due to seasonal changes can greatly affect the performance of CW systems. This study effectively established the contributory factors affecting the feasibility of utilizing CW systems for treating agricultural and livestock discharges and runoff.

  • PDF

Treatment of Pollutants in Free Water Surface Constructed Wetlands with Lotus (Nelumbo nucifera) Cultivation Pond (연 재배지를 활용한 자유수면형 인공습지의 수질정화효율)

  • Han, Myung-Ja;Seo, Dong-Cheol;Kang, Se-Won;Lee, Yong-Chol;Bang, Seok-Bae;Chae, Jung-Heon;Kim, Kap-Soon;Park, Jong-Hwan;Chang, Nam-Ik;Heo, Jong-Soo;Cho, Ju-Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.4
    • /
    • pp.232-238
    • /
    • 2010
  • In order to investigate the treatment efficiency of pollutants in free water surface constructed wetlands (FWS CWs) with lotus (Nelumbo nucifera) cultivation pond, the experiment was consisted of two sites (site I and II) in Lake Juam, Korea. The sites were configured a lotus cultivation pond (with fertilizer application) - a dropwort bed - a reed bed for site I, and a lotus cultivation pond (without fertilizer application) - a dropwort bed - a reed bed for site II. Removal rate of COD in site I and II were 13.3% and 26.0%, respectively. Removal rate of total nitrogen (TN) was 29.7% for site I, and 36.3% for site II. Removal rate of total phosphorus (TP) in site I and II were 36.0% and 36.5%, respectively. COD, TN and TP in effluent from site I (with fertilizer) was higher than that in site II (without fertilizer), showing that COD, TN and TP in effluent were strongly influenced by fertilizer addition. Therefore, in order to satisfy established water-quality standards, the amount of fertilizer used in lotus cultivation showed be evaluated.

Effects of DO concentration on Simultaneous Nitrification and Denitrification(SND) in a Membrane Bioreactor(MBR) (MBR 단일 반응조에서 용존산소 농도에 따른 동시 질산화-탈질반응(SND)의 영향)

  • Park, Noh-Back;Choi, Woo-Yung;Yoon, Ae-Hwa;Jun, Hang-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.371-377
    • /
    • 2009
  • In this study, simultaneous nitrification and denitrification (SND) from synthetic wastewater were performed to evaluate dissolved oxygen(DO) effects on chemical oxygen demand(COD) and nitrogen removal in a single membarne bio-reactor(MBR). DO levels in MBR at Run 1, 2, and 3 were 1.9~2.2, 1.3~1.6, and 0.7~1.0 mg/L, respectively. Experimental results indicated that DO had an important factor to affect COD and total nitrogen(TN) removal. SND were able to be accomplished in the continuous-aeration MBR by controlling ambient DO concentration. It is postulated that, because of the oxygen diffusion limitation, an anoxic micro-zone was formed inside the flocs where the denitrification might occur. From the results of this study, 96% of COD could be removed at DO of 0.7mg/L. At run 2 72.92% of nitrogen was removed by the mechanisms of SND (7.75mg-TN/L in effluent). In this study, SND was successfully occurred in a MBR due to high MLSS that could help to form anoxic zone inside microbial floc at bulk DO concentrations of 1.3~1.6mg/L.

Nitrification/Denitrification of Wastewater in one Column containing Biofilm (Biofilm으로 충전된 단일 Column을 이용한 폐수의 질산화/탈질산화 공정 연구)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • This study investigated possibility of the nitrification and denitrification in one counter-current column with the growth of biofilm attached to its media. This experiment was performed through use of the lab scale reactor composed of the column and settler. The column used was packed with the small size of plastic rings called PALL($1.5{\times}1.5{\;}cm$) with a cylindrical shape. Synthetic wastewater was used in the experiment. The loading rates of carbon (C) and total nitrogen (TN) furnished to the reactor were 0.23 to 1.0 kg COD/m3.d and 0.023 to 1.0 kg N/m3.d, respectively. Major factors controlling the removal efficiencies of COD and TN were the different air flux and volumetric loading rates of COD and TN. The experimental results obtained from this study demonstrated that the removal efficiencies of COD ranged from 90 to 95% and those of TN were from 80 to 83% under the N loading rate of 0.035 and $0.058{\;}kg{\;}N/m^3{\cdot}d$, respectively. The patterns of TN removed were distinctively different on the limit of 50cm of column in depth. This indicated that the nitrification and denitrification occurred near the surface zone of and inside the biofilm respectively, upto the 50cm of the column in depth.

Electrochemical Treatment of COD and T-N in Wastewater from Flue Gas Desulfurization Process (전해처리법에 의한 탈황폐수 중의 COD 및 총 질소 제거)

  • Cha, Go-Eun;Noh, Da-Ji;Seo, Jeong-Hyeon;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1073-1078
    • /
    • 2013
  • This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.

Mass Cultivation of Botryococcus braunii for the Advanced Treatment of Swine Wastewater and Lipid Production in a Photobioreactor (축산폐수의 고도처리 및 지질생산을 위한 Botryococcus branuii의 대량배양)

  • 이석준;김성빈;김희식;권기석;윤병대;오희목
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.166-171
    • /
    • 1999
  • This study was conducted to investigate the removal rate of nitrogen and phosphorus, and lipid production from a swine wastewater by Botryococcus braunii UTEX 572 in an outdoor photobioreactor. B. braunii successfully predominated in competition with bacteria and other algae, especially Oscillatoria, which were grown spontaneously in a secondary-treated swine wastewater, under the conditions of incubation temperature at $25^{\circ}C$ and increased inoculum amount at 287mg/l. There was a significant relationship between dry weight of B. braunii and absorbance of culture solution at 680mn(r2=0.967), suggesting that the latter is as good as the former commonly used for the measurement of algal biomass which is considerably time-consuming. The removal rates of COD, TOC, total nitrogen, and total phosphorus from the swine wastewater were 33.2$\pm$2.6% and 32.8$\pm$3.2, respectively, which showing no different between them. These results suggested that the mass cultivation of B. braunii in an outdoor photobioreactor could be used for the advanced treatment of swine wastewater and lipid production.

  • PDF

Effect of Reed-Bed using Ulsan-habitated P.australis, T.orientalis, and P.aundinacea L. on Removing Pollutants from Sewage (울산지역에서 자생하는 갈대, 부들, 갈풀을 이용한 Reed-Bed의 생활하수 정화능력 연구)

  • 심우섭;한인섭
    • Journal of Environmental Science International
    • /
    • v.7 no.2
    • /
    • pp.117-122
    • /
    • 1998
  • We examined whether several reeds, which are found around Ulsan area, could be used for downflow reed-bed to remove pollutants of sewage. Three kinds of reed, such as Phagnltes auspuis, ha orientdls, and Phduis aundinacea L., were collected from their habitats near the Taehwa River in Ulsan City. In the minimized model system of dowMlow reed-bed, P.auskdls appeared to reduce BOD more than others did but s119h11y Increase total amount of nitrogen(N). When p. auspdis were placed in the sterilized water. total nitrogen was found to be signincantly increased dependent on the number of experimental plant In the sterilized state, but it was rather decreased in the non-sterilized state. With these results, nlicroorganisms attached to p.auspuis roots can be thought to work for removal of pollutants. Therefore, these microorganisms and their habitat, p. auskdis reed bed, together can be used for sewage treatment It was suggested that oxygen Is produced by photosynthesis reaction of P ecustrdis. The increased oxygen may help microorganisms in their habitats to work on the removal of pollutants.

  • PDF

Treatment of natural rubber wastewater by membrane technologies for water reuse

  • Jiang, Shi-Kuan;Zhang, Gui-Mei;Yan, Li;Wu, Ying
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • A series of laboratory scale experiments were performed to investigate the feasibility of membrane separation technology for natural rubber (NR) wastewater treatment and reuse. Three types of spiral wound membranes were employed in the cross-flow experiments. The NR wastewater pretreated by sand filtration and cartridge filtration was forced to pass through the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes successively. The UF retentate, which containing abundant proteins, can be used to produce fertilizer, while the NF retentate is rich in quebrachitol and can be used to extract quebrachitol. The permeate produced by the RO module was reused in the NR processing. Furthermore, about 0.1wt% quebrachitol was extracted from the NR wastewater. Besides, the effluent quality treated by the membrane processes was much better than that of the biological treatment. Especially for total dissolved solids (TDS) and total phosphorus (T-P), the removal efficiency improved 53.11% and 49.83% respectively. In addition, the removal efficiencies of biological oxygen demand (BOD) and chemical oxygen demand (COD) exceeded 99%. The total nitrogen (T-N) and ammonia nitrogen (NH4-N) had approximately similar removal efficiency (93%). It was also found that there was a significant decrease in the T-P concentration in the effluent, the T-P was reduced from 200 mg/L to 0.34 mg/L. Generally, it was considered to be a challenging problem to solve for the biological processes. In brief, highly resource utilization and zero discharge was obtained by membrane separation system in the NR wastewater treatment.

고정화 질화세균을 이용한 저농도 암모니아의 고도처리 (I) 공기 유입량과 수력학적 체류시간의 영향

  • Lee, Jeong-Hun;Kim, Byeong-Jin;Lee, Min-Su;Na, In-Geol;Seo, Geun-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.343-345
    • /
    • 2002
  • This study was performed by the airlift bioreactor using the nitrifier consortium entrapped in polyvinyl alcohol(PVA) for removing low concentration total ammonia nitrogen(TAN). At the aeration rate of 1.5 vvm, TAN removal rate and removal efficiency was 316.6${\pm}$7.2 $g/m^3$ day and 92.8${\pm}$2.2%. Removal rate was continuously increased with decreasing from 0.5hr to 0.05hr of hydraulic residence time(HRT), whereas removal efficiency was decreased with decreasing HRT.

  • PDF

A Study on Water Quality Improvement of Hoeya Dam Reservoir Using Ecological Constructed Wetland (생태적 인공습지를 이용한 회야댐 수질개선에 관한 연구)

  • Lee, Sang-Hyeon;Cho, Yun-Chul
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.489-497
    • /
    • 2011
  • In this study the main purpose is to reduce non-point source pollution and improve water quality of Hoeya reservoir using constructed wetlands. As part of the efforts to improve water quality of the reservoir, cattail and reed-wetland cells were constructed in front of the reservoir to remove nitrogen(N) and phosphorus(P). Also, effects of hydraulic and seasonal variation on removal efficiencies of N and P were investigated. Total P and N removal efficiencies of the wetland system were approximately 20.7% and 42.7%, respectively. Removal efficiencies of N and P during the growth season (july to august) and blooming season of cattail and reed (september to october) were higher than other seasons. These results suggest that wetland system could be an effective alternative for control of non-point source pollutnat such as N and P of reservoir.