• Title/Summary/Keyword: total magnetic field

Search Result 199, Processing Time 0.025 seconds

Variation of Magnetic Field (By, Bz) Polarity and Statistical Analysis of Solar Wind Parameters during the Magnetic Storm Period

  • Moon, Ga-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.2
    • /
    • pp.123-132
    • /
    • 2011
  • It is generally believed that the occurrence of a magnetic storm depends upon the solar wind conditions, particularly the southward interplanetary magnetic field (IMF) component. To understand the relationship between solar wind parameters and magnetic storms, variations in magnetic field polarity and solar wind parameters during magnetic storms are examined. A total of 156 storms during the period of 1997~2003 are used. According to the interplanetary driver, magnetic storms are divided into three types, which are coronal mass ejection (CME)-driven storms, co-rotating interaction region (CIR)-driven storms, and complicated type storms. Complicated types were not included in this study. For this purpose, the manner in which the direction change of IMF $B_y$ and $B_z$ components (in geocentric solar magnetospheric coordinate system coordinate) during the main phase is related with the development of the storm is examined. The time-integrated solar wind parameters are compared with the time-integrated disturbance storm time (Dst) index during the main phase of each magnetic storm. The time lag with the storm size is also investigated. Some results are worth noting: CME-driven storms, under steady conditions of $B_z$ < 0, represent more than half of the storms in number. That is, it is found that the average number of storms for negative sign of IMF $B_z$ (T1~T4) is high, at 56.4%, 53.0%, and 63.7% in each storm category, respectively. However, for the CIR-driven storms, the percentage of moderate storms is only 29.2%, while the number of intense storms is more than half (60.0%) under the $B_z$ < 0 condition. It is found that the correlation is highest between the time-integrated IMF $B_z$ and the time-integrated Dst index for the CME-driven storms. On the other hand, for the CIR-driven storms, a high correlation is found, with the correlation coefficient being 0.93, between time-integrated Dst index and time-integrated solar wind speed, while a low correlation, 0.51, is found between timeintegrated $B_z$ and time-integrated Dst index. The relationship between storm size and time lag in terms of hours from $B_z$ minimum to Dst minimum values is investigated. For the CME-driven storms, time lag of 26% of moderate storms is one hour, whereas time lag of 33% of moderate storms is two hours for the CIR-driven storms. The average values of solar wind parameters for the CME and CIR-driven storms are also examined. The average values of ${\mid}Dst_{min}{\mid}$ and ${\mid}B_{zmin}{\mid}$ for the CME-driven storms are higher than those of CIR-driven storms, while the average value of temperature is lower.

Detection of Fish Virus by Using Immunomagnetic Separation and Polymerase Chain Reaction (IMS-PCR)

  • KIM Soo Jin;OH Hae Keun;CHOI Tae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.948-955
    • /
    • 1997
  • Immunomagnetic separation of virus coupled with .reverse transcription-polymerase chain reaction (IMS-PCR) was performed with infectious hematopoietic necrosis virus (IHNV). A DNA fragment of expected size was synthesized in the RT-PCR with total RNA extracted from IHNV inoculated CHSE-214. In a SDS-PAGE analysis, a protein band of over 70kDa was detected from non-infected cells and cells inoculated with IHNV and infectious pancreatic necrosis virus (IPNV). This protein was detected in the Western blot analysis probably because of non-specific reaction to monoclonal antibody against IHNV nucleocapsid protein. In the immunomagnetic separation, magnetic beads coated with monoclonal antibody against the IHNV nucleocapsid protein was incubated with supernatant from IHNV inoculated CHSE-214 cells. During this process, the non-specifically reacting protein could be removed by washing the magnetic bead with PBS in the presence of an external magnetic field, and viral proteins were detected from the remaining, cleaned magnetic beads. It was necessary to extract viral RNA from the captured virus particles before RT-PCR, and no DNA product was detected when the captured virus was only heated 5 min at $95^{\circ}C$. A PCR-product of expected size was synthesized from IMS-PCR with magnetic beads double coated either by goat anti-mouse IgG antibody -monoclonal antibody or streptavidin - biotin conjugated monoclonal antibody.

  • PDF

Determining plasma boundary in Alvand-U tokamak

  • Yahya Sadeghi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3485-3492
    • /
    • 2023
  • One of the major topic of tokamak research is the determination of the magnetic profile due to magnetic coil fields and plasma current by mean of data from magnetic probes. The most practical approach is to use the current filament method, which models the plasma column with multiple current carrying filaments and the total current of these filaments is equal to the plasma current. Determining the plasma boundary in Alvand-U tokamak is the main purpose of this paper. In order to determine the magnetic field profile and plasma boundary, information concerning the magnetic coils, their position, and current is required in the computing code. Then, the plasma shape is determined and finally the plasma boundary is extracted by the code. In the conducted research, we discuss how to determine the plasma boundary and the performance of the computing code for extraction of the plasma boundary. The developed algorithm shows to be effective by running it in the regular pc machine with characteristics of Intel (R) core (TM) i3-10100 CPU @3.60 GHz and 8.00 GB of RAM. Finally, we present results of a test run for computing code using a typical experimental pulse.

Statistical Studies on the Physical Parameters and Oscillations of Sunspots and Flares

  • Cho, Il-Hyun;Cho, Kyung-Suk;Kim, Yeon-Han
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.2-41.2
    • /
    • 2016
  • We perform three statistical studies on the physical properties and oscillations in the confined plasma such as a photospheric sunspot and confined coronal loop. From the statistical studies on the sunspot umbra and its oscillation, we find that (1) the total magnetic flux inside the umbra for the three groups increases proportionally with the powers of the umbral area and the power indices in the three groups significantly differ from each other; (2) the three groups have different characteristics in their umbral area, intensity, magnetic field strength, and Doppler velocity as well as their relationships; (3) the mean frequency of the umbral oscillations increases with the umbral mean magnetic field strength and height; (4) the time delay of the core intensity of Fe I absorption line relative to the continuum which are de-convolved with the frequency range higher than 3.5 mHz is mostly positive, implying that the photospheric umbral oscillations are likely upwardly propagating; (5) the umbral mean plasma beta ranges approximately 0.6-1.1 and does not vary significantly from pores to mature sunspots. From the comparative study on the quasi-periodic pulsations (QPPs) in the solar and stellar flares, (6) we find that the power index of the periods scaling the damping times observed in the stellar QPPs is consistent with that observed in the solar QPPs, suggesting that physical mechanisms responsible for the stellar QPPs are likely the magneto-hydrodynamic oscillation of solar coronal loops.

  • PDF

Oil Separation from Oil-Contaminated Seawater by MHD Method I (선박사고로 인한 해양유출기름의 MHD방식 분리기술 연구 I)

  • Lee, Seung-Hwan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.299-303
    • /
    • 2005
  • A new method of oil separation from oil-contaminated seawater based on electromagnetic forces, so-called MHD method was designed and formulated. MHD method has advantages of easy treatment of separated oil as well as little effect upon the environment, comparing with a conventional separation method using magnetic powders. Assuming high polymer particles instead of oil, the separation ratio (the mass of simulation particles / the total mass of simulation particles) for the sample fluid was calculated as fuction of electric current, magnetic field and seawater velocity.

  • PDF

Statistical analysis of SC-associated geosynchronous magnetic field perturbations

  • Kim, Gwan-Hyeok;Park, Jong-Seon;Lee, Dong-Hun;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • Kokubun (1983) reported the local time variation of normalized amplitude of sudden commencement (SC) with a strong day-night asymmetry at geosynchronous orbit with 81 SC events. Further careful inspection of Kokubun's local time distribution reveals that the normalized SC amplitudes in the prenoon sector are larger than those in the postnoon sector. That is, there is a morning-afternoon asymmetry in the normalized SC amplitudes. Until now, however, there are no studies on this SC-associated morning-afternoon asymmetry at geosynchronous orbit. Motivated by this previous observation, we investigate a large data set (422 SC events in total) of geosynchronous SC observations and confirm that the geosynchronous SC amplitudes is larger in the morning sector than in the afternoon sector. This morning-asymmetry is probably caused by the enhancement of partial ring current, which is located in the premidnight sector, due to solar wind dynamic pressure increase. We also examine the latitudinal and seasonal variations of the normalized SC amplitude. We find that the SC-associated geosynchronous magnetic field perturbations are dependent on the magnetic latitude and season of the year. This may be due to the location of the magnetopause and cross-tail currents enhanced during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Recovery of Lithospheric Magnetic Component in the Satellite Magnetometer Observations of East Asia (인공위성 자력계에서 관측된 동아시아 암권의 지자기이상)

  • Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 2002
  • Improved procedures were implemented in the production of the lithospheric magnetic anomaly map from Magsat satellite magnetometer data of East Asia between $90^{\circ}E-150^{\circ}E$ and $10^{\circ}S-50^{\circ}N$. Procedures included more effective selection of the do·it and dawn tracks, ring current correction, and separation of core field and external field effects. External field reductions included an ionospheric correction and pass-by-pass correlation analysis. Track-line noise effects were reduced by spectral reconstruction of the dusk and dawn data sets. The total field magnetic anomalies were differentially-reduced-to-the-pole to minimize distortion s between satellite magnetic anomalies and their geological sources caused by corefield variations over the study area. Aeromagnetic anomalies were correlated with Magsat magnetic anomalies at the satellite altitude to test the lithospheric veracity of anomalies in these two data sets. The aeromagnetic anomalies were low-pass filtered to eliminate high frequency components that may not be shown at the satellite altitude. Although the two maps have a low CC of 0.243, there are many features that are directly correlated (peak-to-peak and trough-to-trough). The low CC between the two maps was generated by the combination of directly- and inversely-correlative anomaly features between them. It is very difficult to discriminate directly, inversely, and nully correlative features in these two anomaly maps because features are complicatedly correlated due to the depth and superposition of the anomaly sources. In general, the lithospheric magnetic components were recovered successfully from satellite magnetometer observations and correlated well with aeromagnetic anomalies in the study area.

Magnetized inductively coupled plasma etching of GaN in $Cl_2/BCl_3$ plasmas

  • Lee, Y.H.;Sung, Y.J.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.49-49
    • /
    • 1999
  • In this study, $Cl_2/BCI_3$ magnetized inductively coupled plasmas (MICP) were used to etch GaN and the effects of magnetic confinements of inductively coupled plasmas on the GaN etch characteristics were investigated as a function of $Cl_2/BCI_3$. Also, the effects of Kr addition to the magnetized $Cl_2/BCI_3$ plasmas on the GaN etch rates were investigated. The characteristics of the plasmas were estimated using a Langmuir probe and quadrupole ma~s spectrometry (QMS). Etched GaN profiles were observed using scanning electron microscopy (SEM). The small addition of $Cl_2/BCI_3$ (10-20%) in $Cl_2$ increased GaN etch rates for both with and without the magnetic confinements. The application of magnetic confinements to the $Cl_2/BCI_3$ inductively coupled plasmas (ICP) increased GaN etch rates and changed the $Cl_2/BCI_3$ gas composition of the peak GaN etch rate from 10% $BCI_3$ to 20% $BCI_3$. It also increased the etch selectivity over photoresist, while slightly reducing the selectivity over $Si0_2$. The application of the magnetic field significantly increased positive $BCI_2{\;}^+$ measured by QMS and total ion saturation current measured by the Langmuir probe. Other species such as CI, BCI, and CI+ were increased while species such as $BCl_2$ and $BCI_3$ were decreased with the application of the magnetic field. Therefore, it appears that the increase of GaN etch rate in our experiment is related to the increased dissociative ionization of $BCI_3$ by the application of the magnetic field. The addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition (80% $Cl_2/$ 20% $BCI_3$) with the magnets increased the GaN etch rate about 60%. More anisotropic GaN etch profile was obtained with the application of the magnetic field and a vertical GaN etch profile could be obtained with the addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition with the magnets.

  • PDF

A Study on the Magnetic Properties of Fe-base Amorphous Alloys in High Frequency (철계비정질합금의 고주파 자기특성 연구)

  • 송재성;김기욱;정순종
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.379-384
    • /
    • 1992
  • The Fe-base amorphous ribbons with 15mm width and about 20x10S0-6Tm thickness, (FeS179-xTCrS1xT)BS116TSiS15T and (FeS181-xTMnS1xT) BS112TSiS17T (x:0-6), were prepared melt spinner. The thickness of the ribbons followed by PFC (Planar Flow Casting). The initial permeability and total core losses were measured as a function of additive elements (Cr, Mn) and annealing conditions in high frequency for the purpose of using these materials as a core of magnetic amplifier and switched mode power supplies. The initial permeabilities were enhanced and core losses were decreased by non-magnetic field annealing in proper conditions. The lowest core loss in 0.2T/10kHz was measured at 3% Cr addition amorphous ribbon, and the loss was 5.6W/kg. The permeability of the ribbon at 10kHz was about 9000.

A simulation-based design study of superconducting zonal shim coil for a 9.4 T whole-body MRI magnet

  • Kim, Geonyoung;Choi, Kibum;Park, Jeonghwan;Bong, Uijong;Bang, Jeseok;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2020
  • As high homogeneity in magnetic field is required to increase the resolution of MRI magnets, various shimming methods have been researched. Using one of them, the design of the superconducting active zonal shim coil for MRI magnets is discussed in this paper. The magnetic field of the MRI magnet is expressed as the sum of spherical harmonic terms, and the optimized current density of shim coils capable of removing higher-order terms is calculated by the Tikhonov regularization method. To investigate all potential designs derived from calculated current density, 4 sweeping parameters are selected: (1) axial length of shim coil zone; (2) radius of shim coils; (3) exact axial position of shim coils; and (4) operating current. After adequate designs are determined with constraints of critical current margin and homogeneity criterion, the total wire length required for each is calculated and the design with a minimum of them is chosen. Using the superconducting wire length of 9.77 km, the field homogeneity over 50 cm DSV is improved from 24 ppm to 1.87 ppm in the case study for 9.4 T whole-body MRI shimming. Finally, the results are compared with the finite element method (FEM) simulation results to validate the feasibility and accuracy of the design.