• Title/Summary/Keyword: total integrated scattering

Search Result 9, Processing Time 0.021 seconds

Effect of surface roughness onto the scattering in low loss mirrors (기판의 표면거칠기와 반사경 산란에 대한 연구)

  • 조현주;신명진;이재철
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.209-214
    • /
    • 2002
  • The effect of surface roughness on mirror scattering has been studied. Five kinds of substrates with different surface roughness were fabricated. On those substrates, a dielectric multi-layer coating with high reflectivity was deposited by ion beam sputtering and electron beam evaporation. A total integrated scattering measurement set-up was built for the evaluation of deposited samples. Most of the ion beam sputtered mirrors showed lower scattering than the electron beam evaporated one, which deposited on substrates similar in surface roughness. Over ~2 $\AA$ in surface roughness, scattering strongly depend on the micro-structure of the super-polished surface. The lowest scattering we have achieved is 2.06 ppm by ion beam sputtering from the substrate with surface roughness of 0.23 $\AA$.

Effect of Surface Improvement on Thin Film by In-Situ Laser Annealing Deposition (In-Situ Pulse Laser Annealing 증착에 의한 광학박막의 표면 개선 효과)

  • Lee, Se-Ho;Yu, Yeon-Serk
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.34-40
    • /
    • 2009
  • In-situ pulse laser (Nd-YAG, 2nd harmonics 532 nm) annealing used in physical vapor deposition of $MgF_2$, $SiO_2$ and ZnS thin films was shown to be effective in improving their surface roughness properties. Total integrated scattering (TIS) measurements of $MgF_2$ and $SiO_2$ samples deposited on glass substrates revealed that the laser irradiation of films at an energy of approximately $140\;mJ/cm^2$ at 532 nm with a repetition frequency of 10 Hz and pulse duration of 5 ns during the deposition resulted in total scatterings that were minimum. But in case of the ZnS samples, measurements revealed minimum total scattering at a laser energy of approximately $62\;mJ/cm^2$. Atomic Force Microscopy (AFM) has been used to evaluate the effect of pulse laser annealing on the surface roughness for thin film samples. The results were similar to the TIS measurements, indicating that surface roughness was decreased when the irradiated annealing pulse laser energy increased. But it also increased when the irradiated annealing pulse laser energy was over some limit that depended on the materials.

Production and measurement of a super-polished low-scattering mirror substrate (초연마 저산란 반사경 기판 제작과 평가)

  • 조민식
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • Production and measurement of a super-polished few-ppm-scattering mirror substrate are investigated. In order to improve the surface roughness directly determining scattering, the super-polishing process using Bowl-Feed technique is tried. The surface quality of the super-polished substrate is estimated by the phase-measuring interferometer. For the reliable roughness measurement using the interferometer, data averaging method is applied so that the optimal data averaging condition, 30 phase-data averaging and 20 intensity-data averaging, minimizing the measurement error is experimently searched. Based on the optimal data averaging condition, surface roughness of home-made mirror substrate is measured to be less than $0.5{\AA}$ rms corresponding to 2-ppm total-integrated-scattering.

  • PDF

TIS distribution of low loss mirrors (저손실 반사경의 TIS 산란분포 측정)

  • Im, Kyung-A;Cho, Hyun-Ju;Moon, Yong-Kwon;Shin, Myung-Jin;Jung, Kwon-Sang;Yoon, Sung-Jin;Moon, Gun;Lee, Jae-Chul
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.62-63
    • /
    • 2000
  • 다양한 분야의 요구에 따라 반사율이 99.995% 이상인 고반사 저손실 반사경의 제작이 가능해 지면서 반사경의 산란, 투과, 흡수 및 손실 등을 측정하는 여러 측정 방법들도 더불어 연구되어 왔다. 적용 분야에 따라 사용될 반사경의 특성이 결정되는데 그 중 중력파 측정 장치$^{(1)}$ , 광자 감쇠 분광기$^{(2)}$ 등의 분야에서는 투과, 산란 및 흡수가 모두 작은 저손실 반사경을 요구한다. 한편 링 레이저 자이로스코프의 경우 반사경의 산란이 곧 lock-in을 결정하여 성능을 제한하는 중요한 변수가 된다. 따라서 이 응용의 경우 반사경의 산란을 정확히 측정하는 일은 중요하며 위치에 따른 산란분포 정보를 알면 링 레이저 자이로스코프의 성능 예측과 개선이 더욱 쉬워진다. 산란을 측정하는 직접적인 방법에는 ARS(angle resolved scattering)과 TIS(total integrated scattering)이 있는데, 본 연구에서는 TIS 측정 장비를 반사경의 위치에 따른 산란분포까지 측정할 수 있도록 mapping 기능을 첨가하고 이온빔 스퍼터링에 의해 제작된 저산란 반사경을 측정하기 위해 높은 분해능을 갖도록 구성하였다. 반사경의 응용분야의 필요에 의해 45$^{\circ}$ 산란을 측정하였다. (중략)

  • PDF

Scattering measurement of dielectric high reflection mirrors by TIS method (TIS 방법을 이용한 유전체 고반사 거울의 산란 측정)

  • 조현주;박흥진;황보창권;문환구;김진태;손승현;이재철
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.283-290
    • /
    • 1997
  • Scattering measurement on high reflection dielectric multilayer mirrors deposited on quartz substrate in a vacuum chamber were performed using a total integrated scattering method. Scattering of (Ta$_2$$O_5$/SiO$_2$) multilayer mirrors deposited at 250-30$0^{\circ}C$ was 0.048-0.050% and did not change with an annealing at 30$0^{\circ}C$ for 4 hours. On the other hand, scattering of (TiO$_2$/SiO$_2$) multilayer mirror at 25$0^{\circ}C$ was 0.029% and it showed the heavy tensile stress after an annealing. The rms roughness of (Ta$_2$$O_5$/SiO$_2$) multilayer mirror was almost the same as that of (TiO$_2$/SiO$_2$)multilayer mirror. The column size of Ta$_2$$O_5$ film was smaller than that of TiO$_2$film and the packing density of (Ta$_2$$O_5$/SiO$_2$) multilayer mirrors was higher than that of (TiO$_2$/SiO$_2$) multilayer mirror. It seems that the higher packing density and smaller column size of Ta$_2$$O_5$ films lead to more scattering.

  • PDF

OCI and ROCSAT-1 Development, Operations, and Applications

  • Chen, Paul;Lee, L.S.;Lin, Shin-Fa
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.367-375
    • /
    • 1999
  • This paper describes the development, operations, and applications of ROCSAT-l and its Ocean Color Imager (OCI) remote-sensing payload. It is the first satellite program of NSPO. The satellite was successfully launched by Lockheed Martin's Athena on January 26, 1999 from Cape Canaveral, Florida. ROCSAT-l is a Low Earth Orbit (LEO) experimental satellite. Its circular orbit has an altitude of 600km and an inclination angle of 35 degrees. The satellite is designed to carry out scientific research missions, including ocean color imaging, experiments on ionospheric plasma and electrodynamics, and experiments using Ka-band (20∼30GHz) communication payloads. The OCI payload is utilized to observe the ocean color in 7 bands (including one redundant band) of Visible and Near-Infrared (434nm∼889nm) range with the resolution of 800m at nadir and the swath of 702km. It employs high performance telecentric optics, push-broom scanning method using Charge Coupled Devices (CCD) and large-scale integrated circuit chips. The water leaving radiance is estimated from the total inputs to the OCI, including the atmospheric scattering. The post-process estimates the water leaving radiance and generates different end products. The OCI has taken images since February 1999 after completing the early orbit checkout. Analyses have been performed to evaluate the performances of the instrument in orbit and to compare them with the pre-launch test results. This paper also briefly describes the ROCSAT-l mission operations. The spacecraft operating modes and ROCSAT Ground Segment operations are delineated, and the overall initial operations of ROCSAT-l are summarized.

Receiving Channel Calibration of Multi-Channel Integrated Receiver for Monopulse Radar (모노펄스 레이다용 다채널 집적 수신기의 수신 채널 보정)

  • Jinsung Park
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.109-114
    • /
    • 2024
  • The effect of inter-channel coupling in multi-channel monopulse receiver is expected to increase by miniaturization trend of receiver. Therefore, in this paper, calibration method is proposed to compensation for inter-channel coupling in receiver of monopulse radar. And it can prevent distortion of angle information of target. Hardware configuration that consists of switch, directional coupler, matched load, ADC(Analog to Digital Converter), signal source of calibration is proposed to calibration. Total nine scattering parameters are obtained by controlling the switch and signal source of calibration. After that, method for restoring the undistorted signal is proposed using the mathematical relationship between the monopulse signal output from the antenna and the monopulse signal passing through the multi-channel receiver in the presence of inter-channel coupling.

Effect of Substrata Surface Energy on Light Scattering of a Low Loss Mirror (기판의 표면에너지가 반사경의 산란에 미치는 영향)

  • Lee, Beom-Sik;Yu, Yeon-Serk;Lee, Jae-Cheul;Hur, Deog-Jae;Cho, Hyun-Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • Ultra-low loss ZERODUR and fused silica mirrors were manufactured and their light scattering characteristics were investigated. For this purpose, ZERODUR and fused silica substrates were super-polished by the bowl feed method. The surface roughness were 0.292 ${\AA}$ and 0.326 ${\AA}$ in rms for ZERODUR and fused silica, respectively. To obtain the high reflectivity, 22 thin film layers of $SiO_2$ and $Ta_2O_5$ were deposited by Ion Beam Sputtering. The measured light scattering of ZERODUR and fused silica mirror were 30.9 ppm and 4.6 ppm, respectively. This shows that the substrate surface roughness is not the only parameter which determines the light scattering of the mirror. In order to investigate the mechanism for additional light scattering of the ZERODUR mirror, the surface roughness of the mirror was measured by AFM and was found to be 2.3 times higher than that of the fused silica mirror. It is believed that there is some mismatch at the interface between the substrate and the first thin film layer which leads to the increased mirror surface roughness. To clarify this, the contact angle measurements were performed by SEO 300A, based on the Giriflaco-Good-Fowkes-Young method. The fused silica substrates with 0.46 ${\AA}$ in its physical surface roughness shows lower contact angle than that of the ZERODUR substrate with 0.31 ${\AA}$. This indicates that the thin film surface roughness is determined by not only its surface roughness but also the surface energy of the substrate, which depends on the chemical composition or crystalline orientation of the materials. The surface energy of each substrate was calculated from a contact angle measurement, and it shows that the higher the surface energy of the substrate, the better the surface roughness of the thin film.

Characteristics of Visibility Impairment by Semi-Continuous Optical and Chemical Property Monitoring of Aerosols in Seoul (에어로졸의 광학 및 화학 특성 준실시간 모니터링을 통한 서울지역 시정 감쇄 분석)

  • Park, Jong-Sung;Park, Seung-Myung;Song, In-Ho;Shin, Hye-Jung;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.4
    • /
    • pp.319-329
    • /
    • 2015
  • The characteristics of aerosol light extinction were investigated by comparing measured and calculated extinction coefficient to understand the contribution of air pollutants on visibility impairment for data during 4 months (Jan~ April), 2014. The integrated nephelometer and aethalometer system were installed to measure the scattering and absorption coefficients of aerosol as well as BAM 1020, MARGA, semi-continuous OCEC analyzer, and online-XRF to calculate the extinction coefficient. The IMPROVE_2005 equation was used to determine the contributions of different chemical components on visibility impairment in $PM_{2.5}$ and $PM_{10}$ due to highest correlation with measured data. Sulfate, nitrate, and organic mass by carbon (OMC) of fine aerosol were the major contributors affecting on visibility impairment. Total contributions to light extinction were calculated as $631.0Mm^{-1}$ for the worst-case and $64.4Mm^{-1}$ for the best-case. The concentrations of aerosol component for the worst-case were 38.4 times and 45.5 times larger than those of the best-case for $(NH_4)_2SO_4$ and $NH_4NO_3$, respectively. At lower visibility condition, in which extinction coefficient was higher than $400Mm^{-1}$, extinction coefficient varied according to the relative humidity variation regardless of $PM_{2.5}$.