• 제목/요약/키워드: total ginsenoside

검색결과 368건 처리시간 0.022초

재배년수에 따른 인삼의 생육특성, 생리활성, 성분의 변화 (Changes in Growth Characteristics, Biological Activity and Active Compound Contents in Ginseng of Different Ages)

  • 문지원;장인배;유진;장인복;서수정;이성우
    • 한국약용작물학회지
    • /
    • 제27권6호
    • /
    • pp.383-389
    • /
    • 2019
  • Background: Ginseng has been used as a medicine and functional food since ancient times. It is a perennial crop, and its whose commercial valuse increases with growing period and is affected by the atmosphere and soil environment. Methods and Results: In a selected field, we measured air temperature under a shade structure and soil physicochemical properties, and determied plant and root growth as well as ginsenoside and total polyphenol content of one- to five-year-old ginsengs plants. Although air temperature above 30℃ was recored for more than 37 days, no marked growth inhibition of ginseng was detected. Among all soil physicochemical properties, except for pH, were within the allowable range the shortage increases with ginseng years. In five-year-old ginseng, the quantity is about 9.7% higher than the average weight by standard, indicating that is not affected by temperature when grown under a shade structure. Three-year-old ginseng contained the highest total ginsenoside and total polyphenol levels and exhibited the greatest DPPH radical scavenging activity. Conclusions: The total ginsenoside and protopanaxadiol/protopanaxatriol ratio were both low at five-year-old ginseng plants, which was attributed to rapid growth of the root system in five-year-oid plants. There were no significant differences in total polyphenol content and antioxidant activity between.

Ginsenoside Rg3이 흰쥐 척수압박손상의 초기 염증반응에 미치는 영향 (Effects of Ginsenoside Rg3 on Early-stage Inflammatory Response in Spinal Cord Compression of Rodents)

  • 정벌;이종수
    • 한방재활의학과학회지
    • /
    • 제23권2호
    • /
    • pp.1-15
    • /
    • 2013
  • Objectives : In present study, we investigated the effects of ginsenoside Rg3 on early-stage inflammatory response in spinal cord compression of rodents. Methods : Spinal cord injury(SCI) was induced by a vascular clip method(30 g, 5 min) on the spinal cord of mice. Rg3 was treated orally at 1 hour prior to the SCI induction. Messenger ribonucleic acid(mRNA) expression of tumor necrosis factor-${\alpha}$(TNF-${\alpha}$), interleukin-1${\beta}$(IL-1${\beta}$), interleukin-6(IL-6) and cyclooxygenase-2(COX-2) was measured by the real-time polymerase chain reaction(RT-PCR). Microglia in the spinal cord tissue, neurophils and COX-2 in the peri-lesion and inducible nitric oxide synthase(iNOS) expression in the ventral horn of SCI induced rats were measured by immunohistochemical stain. Results : 1. Rg3 significantly reduced the mRNA expression of TNF-${\alpha}$, IL-1${\beta}$, and COX-2 in the spinal cord tissue compared with SCI group(p<0.05, p<0.01). 2. Rg3 significantly reduced the total number of activated microglia and proportion of phagocytic form in the total activated microglia compared with SCI group(p<0.05, p<0.01). 3. Rg3 significantly reduced myeloperoxidase(MPO) positive neurophil in the peri-lesion compared with SCI group(p<0.05). 4. Rg3 reduced the COX-2 expression in the tissue and motor neurons compared with SCI group. 5. Rg3 significantly reduced iNOS positive motor neurons in the ventral horn compared with SCI group(p<0.01). Conclusions : In conclusion, we demonstrated at first that treatment of ginsenoside Rg3 could reduce significantly the levels of inflammatory mediators in a spinal cord compression model of rodents. Therefore, these results suggested that ginsenoside Rg3 may be a useful antimiflamatory therapeutic candidate for SCI.

Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse

  • Jang, In-Bae;Lee, Dae-Young;Yu, Jin;Park, Hong-Woo;Mo, Hwang-Sung;Park, Kee-Choon;Hyun, Dong-Yun;Lee, Eung-Ho;Kim, Kee-Hong;Oh, Chang-Sik
    • Journal of Ginseng Research
    • /
    • 제39권4호
    • /
    • pp.345-353
    • /
    • 2015
  • Background: Ginseng is a semishade perennial plant cultivated in sloping, sun-shaded areas in Korea. Recently, owing to air-environmental stress and various fungal diseases, greenhouse cultivation has been suggested as an alternative. However, the optimal light transmission rate (LTR) in the greenhouse has not been established. Methods: The effect of LTR on photosynthesis rate, growth, and ginsenoside content of ginseng was examined by growing ginseng at the greenhouse under 6%, 9%, 13%, and 17% of LTR. Results: The light-saturated net photosynthesis rate ($A_{sat}$) and stomatal conductance ($g_{s}$) of ginseng increased until the LTR reached 17% in the early stage of growth, whereas they dropped sharply owing to excessive leaf chlorosis at 17% LTR during the hottest summer period in August. Overall, 6-17% of LTR had no effect on the aerial part of plant length or diameter, whereas 17% and 13% of LRT induced the largest leaf area and the highest root weight, respectively. The total ginsenoside content of the ginseng leaves increased as the LTR increased, and the overall content of protopanaxatriol line ginsenosides was higher than that of protopanaxadiol line ginsenosides. The ginsenoside content of the ginseng roots also increased as the LTR increased, and the total ginsenoside content of ginseng grown at 17% LTR increased by 49.7% and 68.3% more than the ginseng grown at 6% LTR in August and final harvest, respectively. Conclusion: These results indicate that 13-17% of LTR should be recommended for greenhouse cultivation of ginseng.

Inhibitory Effect of Ginsenosides on NMDA Receptor-mediated Signals in Rat Hippocampal Neurons

  • Kim Sunoh;Choo Min-Kyung;Nah Seung-Yeol;Kim Dong-Hyun;Rhim Hyewhon
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.531-544
    • /
    • 2002
  • Ginseng is the best known and most popular herbal medicine used worldwide. Ameliorating effects of ginseng were observed on the models of scopolamine-induced, aged or hippocampal lesioned learning and memory deficits. Further beneficial effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. In spite of these beneficial effects of ginseng on the CNS, little scientific evidence shows at the cellular level. In the present study, we have employed cultures of rat hippocampal neurons and examined the direct modulation of ginseng on NMDA receptor-induced changes in $[Ca^{2+}]_i$ and -gated currents using fura-2-based digital imaging and perforated whole-cell patch-clamp techniques, respectively. We found that ginseng total saponins inhibited NMDA-induced but less effectively glutamate-induced increase in $[Ca^{2+}]_i$ Ginseng total saponins also modulated $Ca^{2+}$ transients evoked by depolarization with 50 mM KCI along with its own effects on $[Ca^{2+}]_i$. Among ginsenosides tested, ginsenoside $Rg_3$ was found to be the most potent component for ginseng actions on NMDA receptors. Furthermore, we examined the inhibitory effects ofbiotransformants of ginsenosides on NMDA receptor using purified stereoisomers of ginsenosides. 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_3$, produced the strongest inhibition while 20(S)-ginsenoside $Rh_1$ and Compound K produced the moderate inhibition on NMDA-induced increase in $[Ca^{2+}]_i$. The data obtained suggest that the inhibition of NMDA receptors by ginseng, in particular by 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_2$, could be one of mechanisms for ginsengmediated neuroprotective actions.

  • PDF

홍삼 Ginsenoside의 Cytochrome P450 저해 활성 평가 (In vitro Assessment of Cytochrome P450 Inhibition by Red Ginseng Ginsenosides)

  • 류창선;신장현;신병찬;심재한;양현동;이성우;김봉희
    • 약학회지
    • /
    • 제59권2호
    • /
    • pp.49-54
    • /
    • 2015
  • In the present study we evaluated comparative herb-drug interaction potential of red ginseng total powder, ginsenoside Rg1, and Rb1 by inhibition of CYP isoforms including CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 using pooled human liver microsomes (HLMs). As measured by liquid chromatography-electrospray ionization tandem mass spectrometry, red ginseng total powder inhibited significantly activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and testosterone 6-beta hydroxylation by CYP3A4, but the $IC_{50}$ values were higher than $556{\mu}g/ml$. Activities of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 were inhibited by ginsenoside Rb1. Also, activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and testosterone 6-beta hydroxylation by CYP3A4 were inhibited by ginsenoside Rg1. The $IC_{50}$ values of ginsenoside Rb1 and Rg1 were higher than $200{\mu}g/ml$. Based on $IC_{50}$ values against CYP isoforms, ginsenosides-drug interactions by CYP inhibition may be very low in clinical situations.

인삼 사포닌이 간세포 독성에 미치는 영향 (The Effect of Ginsenosides on Galactosamine-induced Hepatotoxicity)

  • 김선여;김영중;변순정;김은
    • 생약학회지
    • /
    • 제22권4호
    • /
    • pp.219-224
    • /
    • 1991
  • Liver protective effects of ginsenosides as well as fractions of dammarane glycosides of Panax ginseng were studied using galactosamine (GalN)-induced cytotoxicity in primary cultured rat hepatocytes. Preventing effects on GalN-induced hepatotoxicity were found both microscopic observation and determination of GPT level with total dammarane glycosides fraction and $20(S)-ginsenoside-Rb_1$ as well as $20(S)-ginsenoside-Rg_1$ at the concentration of $50{\mu}g/ml$. The syntheses of both protein and RNA were significantly increased by the treatment of $50{\mu}g/ml$ of total dammarane glycoside fraction, $20(S)-ginsenoside-Rb_1$, -Rc, -Re and $-Rg_1$, respectively in both normal and GalN-induced cytotoxic hepatocytes.

  • PDF

건삼류 생약의 인삼사포닌 성분 비교 (The Comparison of Ginseng Saponin Composition and Contents in Dried Ginseng Radices)

  • 이재범;김민영;조순현;고성권
    • 생약학회지
    • /
    • 제48권3호
    • /
    • pp.255-259
    • /
    • 2017
  • This study was conducted to provide basic information on ginseng saponin of dried ginseng radices. In order to achieve the proposed objective ginsenoside compositions of dried ginseng radices extract with 70% ethyl alcohol were examined by HPLC. The total saponin content, the sum of all ginsenosides, showed that Wild simulated ginseng (WSG), White fine ginseng (WFG), Skin White ginseng (SWG), and White ginseng (WG) stood at 2.510%, 1.643%, 0.587, and 0.429%, respectively. WSG in PPD/PPT ratio was highest at 3.190, WFG (1.934), WG (1.600), SWG (1.386) in order. In the content of ginsenoside Rb1, one of the marker compounds of ginseng, WSG (1.095%) showed the highest content, and WFG (0.527%), SWG (0.246%), WG (0.133%) in this order. The content of ginsenoside Rb1 of WSG (1.095%) was 4.5 times higher than SWG (0.246%). WSG (0.230%) showed the highest content in ginsenoside Rg1, a marker compounds of ginseng, followed by WFG (0.180%), SWG (0.141%) and WG (0.086%). The content of ginsenoside Rg1 of WSG (0.230%) was 1.6 times higher than SWG (0.141%).

Effects of in vitro immune stimulation by ginsenoside Rb1

  • Kim, Ji-Young;Han, Eun-Hee;Jeong, Hye-Gwang
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2006년도 춘계학술대회
    • /
    • pp.57-58
    • /
    • 2006
  • Red ginseng is a classical traditional Chinese medicine. Among Chinese herbs, red ginseng has been considered as one of the tonics. Many studies indicated that red ginseng could enhance immune function of the human body. Red ginseng total saponin, ginsenoside, the most important active constituents identified in red ginseng can protect against myocardial ischaemia damage and protect endothelium against electrolysis-induced free radical injury. Macrophages play a significant role in host defense mechanisms. When activated, they inhibit the growth of a wide variety of tumor cells. The aim of this study was to determine the effects of pure ginsenoside Rb1 on immunostimulatory activity such as murine macrophage phagocytosis and proliferation of splenocytes. Furthermore, we investigated the effects of ginsenoside Rb1 on the production of nitric oxide (NO), reactive oxygen species (ROS) and proinflammatory cytokines (IL-1beta, IL-6, and TNF-alpha) in murine macrophage, RAW 264.7 cells. ROS have emerged as important signaling molecules in the regulation of various cellular processes. Ginsenoside Rb1 significantly increased production of ROS in dose dependent manner. As NO plays an important role in immune function, ginsenoside Rb1 treatment could modulate several aspects of host defense mechanisms due to stimulation. Treatment with ginsenoside Rb1 to macrophages induced the production of NO and proinflammatory cytokines and expression levels of these genes in a dose-dependent manner. Furthermore, incubation of RAW 264.7 cells with ginsenoside Rb1 showed a dose dependent increased phagocytosis activity and lymphocyte proliferation of splenocytes. Therefore, these results suggest that ginsenoside Rb1 has promising potential as a natural medicine for stimulation of the immune system.

  • PDF

인삼 연풍의 근 부위별 직경이 진세노사이드 함량에 미치는 영향 (Effects of Root Diameter Within Different Root Parts on Ginsenoside Composition of Yunpoong Cultivar in Panax ginseng C. A. Meyer)

  • 이상국;강선주;한진수;김정선;최재을
    • 한국약용작물학회지
    • /
    • 제17권6호
    • /
    • pp.452-457
    • /
    • 2009
  • This study was carried out to investigate the correlation between root diameter and ginsenoside composition of Panax ginseng C. A. Meyer cultivar Yunpoong. Dry matter ratio of main root was a little higher than that of lateral root and fine root, and that was higher by the increase of root diameter in the same root parts. Total ginsenosides composition of main and lateral roots increased by the decrease of root diameter, especially in lateral root. Similar resulted in fine root, but there was no significant difference where root diameter was below 2.5 mm. Except for ginsenoside-$Rg_1$, other ginsenosides component, PDs, PTs and total ginsenosides had highly negative correlation with the root diameter within whole root, main root+lateral root and lateral root+fine root, while $Rg_1$ had positive correlation with the root diameter.

Changes of Prosapogenin Components in Tienchi Seng (Panax notoginseng) by Ultrasonic Thermal Fusion Process

  • Lee, Jae Bum;Yang, Byung Wook;Kim, Do Hyeong;Jin, Dezhong;Ko, Sung Kwon
    • Natural Product Sciences
    • /
    • 제27권1호
    • /
    • pp.10-17
    • /
    • 2021
  • The purpose of this study is to develop a new method of producing tienchi seng (notoginseng, Panax notoginseng) extracts featuring high concentrations of the ginsenoside Rg3, Rg5, and Rg6, special components of Korean red ginseng. The chemical transformation from ginseng saponin glycosides to prosapogenin was analyzed by HPLC. Tienchi seng was heat-processed at 100℃ and the optimum conditions were identified. The highest concentrations of total saponin (29.723%) and the ginsenoside Rg3 (1.769%), Rg5 (5.979%), and Rg6 (13.473%) were produced at 48 hours. Also, when tienchi seng was subjected to the ultrasonic thermal fusion (100℃) process, the concentrations of total saponin (30.578%), ginsenoside Rg3 (2.392%), Rg5 (6.614%), and Rg6 (13.017%) were highest at 36 hours. On the other hand, the 2-hour heat-processed extract and 2-hour ultrasonic thermal fusion-processed extract did not contain ginsenoside Rg3, Rg5, and Rg6. The ultrasonic thermal fusion process had an extraction yield that was approximately 1.26 times greater than that of the heat process. These results indicate that the highly functional tienchi seng extracts created through the ultrasonic thermal fusion process are more industrially useful than those produced using the heat process.