• Title/Summary/Keyword: tortion bar

Search Result 3, Processing Time 0.017 seconds

Structure Analysis of an Exoskeleton with a Torsion Bar Gravity Compensator (비틈 봉 중력보상기를 적용한 외력증강기 구조해석)

  • Choi, Hyeong-Sik;Lee, Dong-Jun;Jo, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.467-475
    • /
    • 2012
  • In this paper, a technical method of reducing torque load of exoskeleton device, with using of a gravity compensator based on a torsion bar, for human leg joints, is proposed. Design and structure analyses and also performance test were performed to estimate and to measure the characteristics of the torsion bar. On the basis of design and structure analysis, a new light and compact exoskeleton device has been developed. For the purpose of lightening and optimizing thickness of the links, FEM analysis has been performed.

Experimental Study of a lower body exoskeleton applying a torsion bar gravity compensator (토션바 중력보상기를 적용한 하지용 외골격 장치 실험연구)

  • Choi, Hyeung-Sik;Lee, Dong-June;Yoon, Jong-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.97-98
    • /
    • 2011
  • This paper is about the study of a new exo-skeleton device applying a gravity compensator. The exo-skeleton devices is to reduce the external torque applied to the human body joint for the purpose of helping the disabled, reducing heavy payload for industry workers or military soldiers. Most of the exoskeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, an exoskeleton device using a new gravity compensator based on a torsion bar is proposed to reduce the torque load applied to human body joints. The exoskeleton device is designed for the lower body of human. Analyses on the torsion bar spring and link of the exoskeleton device using FEM method were performed. To reduce the applied torque to the human joint, a torsion bar gravity compensator is applied to the exoskeleton. The effect of the torsion bar compensator for the exoskeleton device was verified through load test using developed test equipment.

  • PDF

Study of a Gravity Compensator for the Lower Body (중력보상기 기반의 하지용 외골격 장치 설계 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Jeon, Ji-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.