• Title/Summary/Keyword: torsional reinforcement

Search Result 52, Processing Time 0.028 seconds

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Thickness of shear flow path in RC beams at maximum torsional strength

  • Kim, Hyeong-Gook;Lee, Jung-Yoon;Kim, Kil-Hee
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.303-321
    • /
    • 2022
  • The current design equations for predicting the torsional capacity of RC members underestimate the torsional strength of under-reinforced members and overestimate the torsional strength of over-reinforced members. This is because the design equations consider only the yield strength of torsional reinforcement and the cross-sectional properties of members in determining the torsional capacity. This paper presents an analytical model to predict the thickness of shear flow path in RC beams subjected to pure torsion. The analytical model assumes that torsional reinforcement resists torsional moment with a sufficient deformation capacity until concrete fails by crushing. The ACI 318 code is modified by applying analytical results from the proposed model such as the average stress of torsional reinforcement and the effective gross area enclosed by the shear flow path. Comparison of the calculated and observed torsional strengths of existing 129 test beams showed good agreement. Two design variables related to the compressive strength of concrete in the proposed model are approximated for design application. The accuracy of the ACI 318 code for the over-reinforced test beams improved somewhat with the use of the approximations for the average stresses of reinforcements and the effective gross area enclosed by the shear flow path.

Torsional Strength and Failure Modes of Reinforced Concrete Beams Subjected to Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 비틀림 강도와 파괴모드)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Kim, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.503-511
    • /
    • 2008
  • This paper presents the results of an analytical and experimental study on the performance of reinforced concrete beams subjected to pure torsion. The main parameters of the experimental tests were amount of torsional reinforcement and the ratio of the transverse torsional reinforcement to the longitudinal torsional reinforcement. The test results indicated that the maximum amount of torsional reinforcement required in ACI 318-05 code underestimated almost twice as much as the observed maximum amount of torsional reinforcement. Comparisons between the tested and calculated torsional behaviors of the 102 beams showed that the torsional failure modes of ACI 318-05 code disagreed with the observed failure modes. In addition, the torsion provisions in ACI 318-05 code overestimate the torsional strength of the RC beams in which relatively large amount of torsional reinforcement were reinforced, while underestimate for the beams with small amount of torsional reinforcement. This discrepancy between the theoretical ultimate torsional strength as given by the ACI 318-05 code and the experimental one can be due to neglecting the tension stiffening effect and the contribution of the torsional strength by concrete.

Rational Approach for Minimum Shear and Torsion Reinforcement (전단과 비틀림의 최소 철근비에 대한 이론적 접근)

  • 이민섭;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.445-448
    • /
    • 1999
  • The minimum shear and torsional reinforcement provisions in ACI 318-95 are still empirical. This paper describes the derivation of a rational approach for minimum shear and torsional reinforcement in beams so as to preclude brittle failure in shear and torsion. This is ensured by specifying that the beam's ultimate capacity of shear and torsion should be greater than its cracking shear and torsion. The formula presented herein for computing minimum shear and torsional reinforcement shows the need for modification of current provision for the minimum shear and torsion reinforcement.

  • PDF

Torsional Strength of RC Beams Designed according to ACI 318-02 Building Code (ACI 318-02 기준으로 설계된 철근콘크리트 보의 비틀림 강도 검토)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Hyang, Hyun-Bok;Kim, Ji-Hyun;Park, Ji-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. In this study, 9 RC beams subjected to pure torsion were tested. The main parameter of the beams was the amount of torsional reinforcement and the angle of twist. Test results indicated that the current ACI code over-estimated the torsional strength of RC beams that had larger amount of torsional reinforcement.

  • PDF

Minimum Torsional Reinforcement Ratio of Reinforced Concrete Members for Safe Design (안전한 설계를 위한 철근콘크리트 부재의 최소비틀림철근비)

  • Kim, KangSu;Lee, DeuckHang;Park, Min-Kook;Lee, Jung-Yoon;Ju, HyunJin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.641-648
    • /
    • 2013
  • Current design codes regulate the minimum torsional reinforcement requirement for reinforced concrete members to prevent their brittle failure. The minimum torsional reinforcement ratio specified in the current national code and ACI318-11, however, have problems in the minimum longitudinal reinforcement ratio for torsion, the equilibrium condition in space truss model, and a marginal strength, etc. Thus, in order to overcome such shortcomings, this study presents a rational equation for minimum torsional reinforcement ratio that can provide a sufficient margin of safety in design. The minimum torsional reinforcement ratio proposed in this study was compared to the test results available in literature, and it was confirmed that it gave a proper margin of safety for all specimens studied in this paper.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

Prediction on the Torsional Strength of Reinforced Concrete Beams Subjected to Pure Torsion by Truss Model (트러스 모델을 이용한 순수비틀림을 받는 철근콘크리트 보의 비틀림 강도 예측)

  • 박지선;김상우;이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1103-1108
    • /
    • 2001
  • ACI 318-99 predicts the torsional moment of reinforced concrete members by assuming that the angle of diagonal compressive concrete is equal to 45 degree. However, this angle depends on the difference of longitudinal and transverse steel ratios. This paper compares the torsional moments calculated by ACI 318-99 code and a truss model considering compatibility of strains. The comparison indicated that the torsion equation in ACI code underestimated the real torsional moment of reinforced concrete beam in which the ratio of longitudinal reinforcement was larger than that of transverse reinforcement.

  • PDF

The torsional behavior of reinforced self-compacting concrete beams

  • Aydin, Abdulkadir C.;Bayrak, Baris
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.187-198
    • /
    • 2019
  • Torsional behaviors of beams are investigated for the web reinforcement and the concrete type. Eight beams with self-compacting concrete (SCC) and twelve beams with conventional concrete (CC) were manufactured and tested. All the models manufactured as the $250{\times}300{\times}1500mm$ were tested according to relevant standards. Two concrete types, CC and SCC were designed for 20 and 40 MPa compressive strength. From the point of web reinforcement, the web spacing was chosen as 80 and 100 mm. The rotation angles of the concrete beams subjected to pure torsional moment as well as the cracks occurring in the beams, the ultimate and critical torsional moments were observed. Moreover, the ultimate torsional moments obtained experimentally were compared with the values evaluated theoretically according to some relevant standards and theories. The closest estimations were observed for the skew-bending theory and the Australian Standard.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.