• Title/Summary/Keyword: torsional design

Search Result 533, Processing Time 0.03 seconds

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

A Study on Adhesive Joints for Composite Driveshafts (복합재료 동력전달축의 접착조인트에 관한 연구)

  • 김진국;이대길;최진경;김일영
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.13-21
    • /
    • 2001
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece driveshafts composed of carbon/epoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesive joint was used to join the composite shaft and the aluminum yoke. The torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element analysis and compared with the experimental result. Torque transmission capability was based on the Tsai-Wu failure index fur composite shaft and the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and the finite element analyses, it was found that the static torque transmission capability of the composite driveshaft was highest at the critical yoke thickness, and saturated beyond the critical length. Also, it was found that the one-piece composite driveshaft had 40% weight saving effect compared with a conventional two-piece steel driveshaft.

  • PDF

Analytical and Experimental Study for Development of Composite Coil Springs (복합재 코일스프링 개발을 위한 수치해석 및 실험적 연구)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • This paper shows the feasibility of using carbon-fiber-reinforced polymer (CFRP) composite materials for manufacturing automotive coil springs. For achieving weight reduction by replacing steel with composite materials, it is essential to optimize the material parameters and design variables of the coil spring. First, the shear modulus of a CFRP beam model, which has $45^{\circ}$ ply angles for maximum torsional stiffness, was calculated and compared with the test results. The diameter of the composite spring was predicted to be 17.5 mm for ensuring a spring rate equal to that when using steel material. Finally, a finite element model of the composite coil spring with $45^{\circ}$ ply angles and 17.5 mm wire diameter was constructed and analyzed for obtaining the static spring rate, which was then compared with experimental results.

Computations of Dynamic Wave Loads of a Catamaran (쌍동선의 파랑 동하중 추정)

  • H.H. Chun;M.S. Kim;J.H. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.50-60
    • /
    • 1999
  • In order to design a safe and economic catamaran, it is of clime importance to rigorously estimate the dynamic loads on the catamaran in waves. In this paper, the 2-D strip method by Lee et al.[3] is. extended to a 3-D method which can estimate the dynamic loads(horizontal and vertical shear forses, and bending and torsional moments) acting on the center of the cross deck of the catamaran travelling in an arbitrary wave heading angle. The computational results are compared with Wahab et al's experimental data[2], and also 2-D and 3-D numerical results published. It is found that in general, the 3-D method give much improved correlations with the experimental data compared with 2-D methods, but there are some discrcrepancy between the same 3-D results used by the same theory. In order to improve the accuracy, the effect of the viscous flow and the rigid consideration of the forward speed effect seem to be necessary.

  • PDF

Structural Analysis of Composite Partition Panel according to Weaving Methods (직조 방법에 따른 복합재 파티션 패널의 구조 해석)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Lee, Jae Jin;Mun, Ji Hun;Kang, Da Kyung;Ahn, Min Su;Lee, Jae Wook
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.140-146
    • /
    • 2020
  • The purpose of this paper is to examine the possibility of weight reduction by changing the partition panel of vehicle from an existing aluminum material to carbon fiber reinforced plastics. Three weaving methods (plain, twill and satin) were used in the manufacture of composite materials, and they were produced and tested to derive their material properties. The analysis model of composite partition panel for torsional conditions was developed and the structural stability and system stiffness were evaluated according to Tsai-Hill failure criteria. With design variables for fiber orientation angles and stacking sequence, evolutional optimal algorithm was performed and as the results, the optimal composite partition panel was designed. In addition, the structural analysis results for strength and specific stiffness were compared with aluminum partition panels and composite partition panels to verify the possibility of weight reduction.

Design of A Broadband Bowtie Antenna for RF Spectral Measurements of Alfvén-wave in the KSTAR Tokamak (KSTAR 토카막의 Alfvén파 RF 스펙트럼 측정을 위한 광대역 보우타이 안테나 설계)

  • Woo, Dong Sik;Kim, Sung Kyun;Kim, Kang Wook;Choi, Hyun-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • During KSTAR plasma experiments, torsional $Alfv\acute{e}n$ waves in the frequency of few GHz or below were detected. To understand this plasma waves during the crash of MHD instabilities, an RF spectrometer has been developed for detection of the radiated RF signals in the KSTAR Tokamak. It has the capability of broadband RF spectral measurement (50 ~ 400 MHz). To detect the broadband RF signals which are radiated from the KSTAR systems, a broadband antenna is the key feature of the RF spectrometer. In this paper, a broadband bowtie antenna for detection of $Alfv\acute{e}n$-waves in the KSTAR Tokamak is presented. Planar-type bowtie antenna is designed and fabricated on an FR4 substrate with thickness of 1.6 mm. The antenna consists of bowtie shaped balanced radiators and broadband planar balun. The antenna is designed to have an input impedance of 50 Ohm, and a taper-shaped balun is adopted for field and impedance matching between 50 Ohm transmission line to 110 Ohm feeding network of balanced radiators. The implemented antenna provides around -3 to 3 dBi of gain for the whole frequency band. The VSWR of the bowtie antenna is less than 12:1 over the frequency bandwidth of 50 to 2000 MHz.

Parameter Optimization of the Marine Gyrocompass Follow-up System (자이로콤파스 추종계통의 최적조정)

  • 이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.2
    • /
    • pp.49-58
    • /
    • 1981
  • One of the main purposes of the marine gyrocompass follow-up system is to preserve the sensitive part from the wandering error due to the frictional or torsional torque around the vertical axis. This error can be diminished through the rapid follow-up action, which minimizes the relative azimuthal angular displacement between the sensitive and follow-up parts and shortens the duration of the same displacement. But an excessive rapidity of the follow-up action would result in a sustained oscillation to the system. Therefore, to design a new type of the follow-up system, the theoretical annlysis of the problems concerned should be studied systematically by introducing the control theory. This paper suggest a concrete procedure for the optimal adjustment of the gyrocompass follow-up system, utilizing the mathematic model and the stability informations formerly investiaged by the author. For theoptimal determination of the adjustable paramfter K, the performance index(P.I.), ITSE(Intergral of the Time multiplied by the Squared Error) is proposed, namely, P.I. = $\int_{0}^{\infty} t \cdot e^{2}(t)dt$ where t is time and e(t) means control error. Then, the optimal parameter minimizing the performance index is calculated by means of Parseval's theorem and numerical computation, and the validity of the obtained optimal value of the parameter Ka is examined and confirmed through the simulations and experiments. By using, the proposed method, the optimal adjustment can be performed deterministically. But, this can not be expected in the conventional frequency domain analysis. While the Mps of the original system vary to the extent of from 0.98 to 46.27, Mp of the optimal system is evaluated as 1.1 which satisfies the generally accepted frequency domain specification.

  • PDF

Experimental Evaluation of Flexural Performance Evaluation of Tapered H-Section Beams with Slender Web (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 실험적 평가)

  • Shim, Hyun Ju;Lee, Seong Hui;Kim, Jin Ho;Lee, Eun Taik;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.483-492
    • /
    • 2007
  • Pre-Engineering Building (PEB) system is one of the most economical structural systems. Tapered members can resist a maximum stress at a single location, whereas stresses of the rest of the members are considerably low. This results in appreciable savings both in terms of materials and construction costs. However, it was appreciated that special consideration would be required for certain aspects of this structural form. In particular, because of their slenderness, webs would buckle laterally and torsionally under the combined action of excessive axial, bending and shear forces. In this study, a total of four large-scale rafters with simple ends were tested. The main parameters were the width-thickness ratio of the web, the stiffener, and the flange brace. The purpose of this experiment is to evaluate the structural stability and to offer back-data on PEB design.

Analyses of Structural Behaviors According to Core Location in the Building with Symmetric Plan (대칭 평면형 건물에서의 코어위치에 따른 구조거동 분석)

  • Kim, Jung-Rae;Kim, Jae-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.116-124
    • /
    • 2020
  • In order to analyze the lateral-load resisting capability according to the core locations, three-dimensional structural analyses were performed for 20-story buildings with symmetric plan. Four analytical models for a center core, a single-axial eccentric core, and a double-axial eccentric core were constructed, and eigenvalue analyses, wind-load analyses, and earthquake-load analyses were performed. Torsion did not occur in the central core building, but the bending and torsion occurred in combination with the arrangement of the eccentric core, and the lateral-load resisting capability was degraded. The change in the wind load according to the eccentric core was small, but the maximum lateral displacement was found to increase greatly by the eccentric arrangement of the core. In addition, in case of the eccentric core, the seismic load was slightly reduced compared to the center core due to the decrease in the lateral stiffness, but it was found that the maximum story drift ratio increased significantly due to the torsional effect. Based on these results, the structural behavior according to the position of the core can be clearified and used as a guideline for core locations in the planning and design stage.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.