• 제목/요약/키워드: torsion-coupling effect

검색결과 16건 처리시간 0.019초

Damage identification of isolators in base-isolated torsionally coupled buildings

  • Wang, Jer-Fu;Huang, Ming-Chih;Lin, Chi-Chang;Lin, Tzu-Kang
    • Smart Structures and Systems
    • /
    • 제11권4호
    • /
    • pp.387-410
    • /
    • 2013
  • This paper deals with the damage assessment for isolators of base-isolated building systems considering the torsion-coupling (TC) effect by establishing damage indices. The damage indices can indicate the reduction in lateral stiffness of the isolator story as explicit formulas in terms of modal parameters. In addition, the damage location, expressed in terms of the estimated damage index and eccentricities before and after damage, is also presented. Numerical analysis shows that the proposed algorithms are applicable for general base-isolated multi-story TC buildings. A procedure from the analysis of seismic response to the implementation of damage indices is demonstrated by using a numerical case. A system identification technique is employed to extract modal parameters from seismic responses of a building. Results show that the proposed indices are capable of detecting the occurrence of damage and preliminarily estimating the location of damaged isolator.

Transmission Characteristics of Long-Period Fiber Gratings Using Periodically Corroded Single-Mode Fibers

  • Lee, Jonghwan;Bang, Ngac An;Han, Young-Geun
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.376-381
    • /
    • 2015
  • Transmission characteristics of long-period fiber gratings (LPFGs) fabricated by periodically etching a conventional single-mode fiber (SMF) are investigated. After coating the SMF with photoresist, the cladding of the SMF is symmetrically and periodically removed by using a wet etching technique resulting in the formation of the LPFG. Tensile strain reinforces the coupling strength between the core and the cladding mode based on the photoelastic effect. The extinction ratio of the SMF-based LPFG at a wavelength of 1550.8 nm is measured to be -15.1 dB when the applied strain is $600{\mu}{\varepsilon}$. The ascent of ambient index shifts the resonant wavelength to shorter wavelength because of the increase of the effective refractive index of the cladding mode. The extinction ratio is diminished by increase in the ambient index because of the induction of the optical attenuation of the cladding mode. The transmission characteristics of the proposed LPFG with variations in torsion are also measured. The photoelastic effect based on torsion changes the extinction ratio and the resonant wavelength of the proposed SMF-based LPFG. The polarization-dependent loss of the LPFG is also increased by torsion because of the torsion-induced birefringence. The polarization-dependent loss of the LPFG at torsion of 8.5 rad/m is measured to be 3.9 dB.

Aeroelastic deformation and load reduction of bending-torsion coupled wind turbine blades

  • Shaojun, Du;Jingwei, Zhou;Fengming, Li
    • Wind and Structures
    • /
    • 제35권5호
    • /
    • pp.353-368
    • /
    • 2022
  • Wind turbine blades are adjusted in real-time according to the wind conditions and blade deformations to improve power generation efficiency. It is necessary to predict and reduce the aeroelastic deformations of wind turbine blades. In this paper, the equivalent model of the blade is established by the finite element method (FEM), and the aerodynamic load of the blade is evaluated based on the blade element momentum (BEM) theory. The aeroelastic coupling model is established, in which the bending-torsion coupling effect of the blade is taken into account. The steady and dynamic aeroelastic deformations are calculated. The influences of the blade section's shear centre position and the blade's sweepback design on the deformations are analyzed. The novel approaches of reducing the twist angle of the blade by changing the shear centre position and sweepback of the blade are presented and proven to be feasible.

비틀림 전단시험(剪斷試驗)에 의한 K0-압밀점토(壓密粘土)의 거동(擧動) (Behavior of K0-Consolidated Clay in Torsion Shear Tests)

  • 홍원표
    • 대한토목학회논문집
    • /
    • 제8권1호
    • /
    • pp.151-157
    • /
    • 1988
  • $K_0$-압밀점토(壓密粘土)의 응력(應力)-변형거동(變形擧動) 및 강도특성(强度特性)에 미치는 주응력회전(主應力回轉)의 영향을 조사하기 위하여 중공원통형공시체(中空圓筒型供試體)에 대하여 응력경로(應力徑路)를 여러가지로 변경시키면서 비틀림전단시험(剪斷試驗)을 실시하였다. 본(本) 연구(硏究) 결과로부터 응력경로(應力徑路) 및 주응력회전(主應力回轉)은 주로 파괴(破壞) 이전의 응력(應力)-변형거동(變形擧動)에 영향을 미치고 있음을 알 수 있었다. 또한, 비틀림전단시험(剪斷試驗) 결과로부터 얻어진 파괴강도(破壞强度)는 등방체(等方體)에 제안된 파괴규준(破壞規準)(failure criterion)과 실용적으로 잘 일치하였으며, 전단응력(剪斷應力)과 연직응력(鉛直應力)이 함께 작용될 때 응력(應力)과 변형율(變形率) 사이에 결합효과(結合効果)(coupling effect)가 발생하였다. 마지막으로 비틀림전단시험(剪斷試驗) 결과에 대한 일공간(空間)(work space)개념이 설명되고 응력(應力)과 변형율증분(變形率增分) 사이의 관계가 이 일공간(空間) 상에서 검토되었다.

  • PDF

Ratio of Torsion (ROT): An index for assessing the global induced torsion in plan irregular buildings

  • Stathi, Chrysanthi G.;Bakas, Nikolaos P.;Lagaros, Nikos D.;Papadrakakis, Manolis
    • Earthquakes and Structures
    • /
    • 제9권1호
    • /
    • pp.145-171
    • /
    • 2015
  • Due to earthquakes, many structures suffered extensive damages that were attributed to the torsional effect caused by mass, stiffness or strength eccentricity. Due to this type of asymmetry torsional moments are generated that are imposed by means of additional shear forces developed at the vertical resisting structural elements of the buildings. Although the torsional effect on the response of reinforced concrete buildings was the subject of extensive research over the last decades, a quantitative index measuring the amplification of the shear forces developed at the vertical resisting elements due to lateral-torsional coupling valid for both elastic and elastoplastic response states is still missing. In this study a reliable index capable of assessing the torsional effect is proposed. The performance of the proposed index is evaluated and its correlation with structural response quantities like displacements, interstorey drift, base torque, shear forces and upper diaphragm's rotation is presented. Torsionally stiff, mass eccentric single-story and multistory structures, subjected to bidirectional excitation, are considered and nonlinear dynamic analyses are performed using natural records selected for three hazard levels. It was found that the proposed index provides reliable prediction of the magnitude of torsional effect for all test examples considered.

비틀림전단시험에 의한 모래의 응력 -변형률 거동 (The Stress -Strain Behavior of Sand in Torsion Shear Tests)

  • 남정만;홍원표
    • 한국지반공학회지:지반
    • /
    • 제9권4호
    • /
    • pp.65-82
    • /
    • 1993
  • 주응력회전시 모래의 응력-변형률 거동을 조사하기 위하여 Santa Monies해변의 모래에 대 한 비틀림전단시험이 여러가지 응력경로에 대해 실시되었다. 모래에 대한 비틀림전단시험에서는 점토에서와 달리 Torque의 작용방향을 시계방향과 반시계방향 모두에 대해 작용하였으며, 공시체의 측방변형량 측정도 내부압축실의 체적변형량으로부터 평균 변형량을 측정함으로 점토시 사용하였던 Clip gage를 제거하여 시험을 보다 편리하게 할 수 있었으며 어느 일부분에서 측정했던 측방변형을 대표값으로 사용하였던 단점을 보완하였다. 그리고 공시체의 제작은 모래를 공중낙하법에 의해 실시하여 밀도를 균등하게 만들었으며 공시체의 체적변형량은 COI 가스를 이용하여 체적변형량 측정을 보다 정확하게 할 수 있었다. 시험결과로부터 비틀림전단시험에 의한 모래의 응력 -변형률 거동이 조사되었으며 또한 주응력축 회전효과가 검토되었다. 그리고 연직응력이나 전단응력중 하나가 고정인 상태에서 다른 하중을 작용하였을시 선행하중에 의한 결합효과(coupling effect)에 의해 선행하중에 대한 전단변형률과 연직변형률이 계속 관찰되었다. 한편 축변형률에 대한 주응력비 o1/o3의 관계에서 파괴가 발생하는 축변형률의 위치는 축차주응력비 b(=(o2-o3)/(o1-o3))가 증가함에 따라 감소하는 것으로 나타났다.

  • PDF

콘테이너선의 수평-비틂연성진동 해석 (Analysis of Coupled Horizontal-Torsional Vibrations of Container Ships)

  • 김극천;김상주
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.1-10
    • /
    • 1986
  • A container ship, due to wide hatch openings, has characteristics of poor torsional rigidity, strong coupling of horizontal-torsional modes and significant discontinuity in the longitudinal variation of hull sections. In the mathematical formulation of the problem the hull is modeled as a beam and the transfer matrix method is utilized. The cross decks between cargo hatch opening are separated from the main hull and regarded as equivalent springs restraining torsion of hull. The effect of shear deformation of ship-side plating on torsion is taken into account in addition to St. Venant's and bending torsional rigidities. Compatibility requirements at cross section discontinuity are approximately considered. Developing the practical calculation procedure and the computer programs for application to an actual ship, some parametric studies on modeling methods of the cross deck, the compatibility condition, added-mass center etc. are out for the purpose of comparison.

  • PDF

Elastic flexural and torsional buckling behavior of pre-twisted bar under axial load

  • Chen, Chang Hong;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.273-283
    • /
    • 2014
  • According to deformation features of pre-twisted bar, its elastic bending and torsion buckling equation is developed in the paper. The equation indicates that the bending buckling deformations in two main bending directions are coupled with each other, bending and twist buckling deformations are coupled with each other as well. However, for pre-twisted bar with dual-axis symmetry cross-section, bending buckling deformations are independent to the twist buckling deformation. The research indicates that the elastic torsion buckling load is not related to the pre-twisted angle, and equals to the torsion buckling load of the straight bar. Finite element analysis to pre-twisted bar with different pre-twisted angle is performed, the prediction shows that the assumption of a plane elastic bending buckling deformation curve proposed in previous literature (Shadnam and Abbasnia 2002) may not be accurate, and the curve deviates more from a plane with increasing of the pre-twisting angle. Finally, the parameters analysis is carried out to obtain the relationships between elastic bending buckling critical capacity, the effect of different pre-twisted angles and bending rigidity ratios are studied. The numerical results show that the existence of the pre-twisted angle leads to "resistance" effect of the stronger axis on buckling deformation, and enhances the elastic bending buckling critical capacity. It is noted that the "resistance" is getting stronger and the elastic buckling capacity is higher as the cross section bending rigidity ratio increases.

Effect of rigid connection to an asymmetric building on the random seismic response

  • Taleshian, Hamed Ahmadi;Roshan, Alireza Mirzagoltabar;Amiri, Javad Vaseghi
    • Coupled systems mechanics
    • /
    • 제9권2호
    • /
    • pp.183-200
    • /
    • 2020
  • Connection of adjacent buildings with stiff links is an efficient approach for seismic pounding mitigation. However, use of highly rigid links might alter the torsional response in asymmetric plans and although this was mentioned in the literature, no quantitative study has been done before to investigate the condition numerically. In this paper, the effect of rigid coupling on the elastic lateral-torsional response of two adjacent one-story column-type buildings has been studied by comparison to uncoupled structures. Three cases are considered, including two similar asymmetric structures, two adjacent asymmetric structures with different dynamic properties and a symmetric system adjacent to an adjacent asymmetric one. After an acceptable validation against the actual earthquake, the traditional random vibration method has been utilized for dynamic analysis under Ideal white noise input. Results demonstrate that rigid coupling may increase or decrease the rotational response, depending on eccentricities, torsional-to-lateral stiffness ratios and relative uncoupled lateral stiffness of adjacent buildings. Results are also discussed for the case of using identical cross section for all columns supporting eachplan. In contrast to symmetric systems, base shear increase in the stiffer building may be avoided when the buildings lateral stiffness ratio is less than 2. However, the eccentricity increases the rotation of the plans for high rotational stiffness of the buildings.

10 MW급 복합재 풍력 블레이드의 굽힘-비틀림 커플링 거동 연구 (Bend-Twist Coupling Behavior of 10 MW Composite Wind Blade)

  • 김수현;신형기;방형준
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.369-374
    • /
    • 2016
  • 본 연구에서는 굽힘-비틀림 커플링(bend-twist coupled, BTC) 설계개념을 적용한 10 MW급 복합재 풍력 블레이드의 구조 최적 설계를 수행하였다. BTC 설계개념은 동적 하중 상황에서 블레이드의 굽힘과 비틀림 거동 사이의 연동을 유도하여, 단면 받음각 변화에 의한 수동적인 적응 하중저감이 가능하다. 인자연구를 통해 최적의 BTC 설계인자를 추출하여 블레이드 구조설계에 적용하였다. BTC 개념이 동적 하중 감소에 미치는 영향을 가늠하기 위해 블레이드 루트 부에서의 피로등가하중을 계산한 결과, BTC 개념이 적용된 블레이드를 적용한 경우 피로등가하중이 2-3% 정도 감소하는 것을 확인할 수 있었다. BTC 효과를 시험적으로 검증하기 위해 1:29 비율의 블레이드 stiffener 축소모델을 제작하였으며, 정하중 시험을 통해 처짐 거동 시 끝단에서의 비틀림을 측정하였다.