• 제목/요약/키워드: torsion coupling

검색결과 50건 처리시간 0.025초

Dynamic Analysis of Bending-Torsion Coupled Beam Structures Using Exact Dynamic Elements

  • Hong, Seong-Wook;Kang, Byung-Sik;Park, Joong-Youn
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.15-22
    • /
    • 2003
  • Beams are often subject to bending-torsion coupled vibration due to mass coupling and/or stiffness coupling. This paper proposes a dynamic analysis method using the exact dynamic element for bending-torsion coupled vibration of general plane beam structures with joints. The exact dynamic element matrix for a bending-torsion coupled beam is derived, and the detailed procedure of using the exact dynamic element matrix is also presented. Three examples are provided for validating and illustrating the proposed method. The numerical study proves the proposed method to be useful for dynamic analysis of bending-torsion coupled beam structures with joints.

고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선 (Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling)

  • 이돈출
    • 한국소음진동공학회논문집
    • /
    • 제13권12호
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

고무 탄성커플링을 갖는 선박 추진용 축계 비틀림의 동특성 (Dynamic Characteristics of torsion for Marine Propulsion Shafting system with Elastic Rubber Coupling)

  • 이돈출;김상환;유정대
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.742-748
    • /
    • 2003
  • As for marine propulsion shafting system using 4 stroke diesel engine, it is common to apply reduction gear box between diesel engine and shafting with a view of increasing mechanical efficiency, which inevitably require elastic coupling due to avoid chattering and hammering inside of gear box. In this study, optimum method of rectifying propulsion shafting system in case of 750ton fishing vessel specially in a view of torsional vibration, is theoretically studied. After exchange of diesel engine and gear box, analysis result of torsional vibration get worse and so some countermeasure are needed. The elastic coupling is modified from present block type rubber coupling showing relatively high torsional stiffness to rubber coupling with two series elements directly connected. The vibration measurement using two laser torsion meters was done during sea trial, whose results are compared to those of calculation and verified.

  • PDF

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • 제28권6호
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

터보펌프용 커빅커플링의 개발 (A Curvic-Coupling Development for the Turbopump Application)

  • 정은환;윤석환;김진한
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2009
  • 본 연구에서는 커빅커플링의 설계, 구조해석, 고온 비틀림시험 및 실형상 축-디스크를 제작/조립성 검토를 통해 터보펌프 터빈에의 적용 가능성을 타진하였다. 커플링의 치형은 Gleason 치형을 기본형상으로 하여 설계운용조건의 1.5배의 토크값을 기준으로 설계를 진행하였다. 구조해석 및 고온비틀림 시험을 통해 하중조건하의 안정성을 확인하였으며 특히 비틀림시험 후 커플링의 변형은 미미함을 확인하였다. 커빅커플링을 적용한 실형상 디스크 제작 및 조립시험을 통해 설계요구조건을 하회하는 디스크의 외주 및 축방향 흔들림 그리고 조립재현성을 확인하였다.

  • PDF

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

Multilayered viscoelastic beam loaded in torsion under strain-path control: A delamination analysis

  • Victor I. Rizov
    • Advances in materials Research
    • /
    • 제13권2호
    • /
    • pp.87-102
    • /
    • 2024
  • This paper is focused on the delamination analysis of a multilayered beam structure loaded in torsion under strain-path control. The beam under consideration has a rectangular cross-section. The layers of the beam are made of different viscoelastic materials which exhibit continuous inhomogeneity in longitudinal direction. Since the delamination is located inside the beam structure, the torsion moments in the two crack arms are obtained by modeling the beam as an internally static undetermined structure. The strain energy stored in the beam is analyzed in order to derive the strain energy release rate (SERR). Since the delamination is located inside the beam, the delamination has two tips. Thus, solutions of the SERR are obtained for both tips. The solutions are verified by analyzing the beam compliance. Delamination analysis with bending-torsion coupling is also performed. The solutions derived are timedependent due to two factors. First, the beam has viscoelastic behavior and, second, the angle of twist of the beam-free end induced by the external torsion moment changes with time according to a law that is fixed in advance.

비틀림 전단시험(剪斷試驗)에 의한 K0-압밀점토(壓密粘土)의 거동(擧動) (Behavior of K0-Consolidated Clay in Torsion Shear Tests)

  • 홍원표
    • 대한토목학회논문집
    • /
    • 제8권1호
    • /
    • pp.151-157
    • /
    • 1988
  • $K_0$-압밀점토(壓密粘土)의 응력(應力)-변형거동(變形擧動) 및 강도특성(强度特性)에 미치는 주응력회전(主應力回轉)의 영향을 조사하기 위하여 중공원통형공시체(中空圓筒型供試體)에 대하여 응력경로(應力徑路)를 여러가지로 변경시키면서 비틀림전단시험(剪斷試驗)을 실시하였다. 본(本) 연구(硏究) 결과로부터 응력경로(應力徑路) 및 주응력회전(主應力回轉)은 주로 파괴(破壞) 이전의 응력(應力)-변형거동(變形擧動)에 영향을 미치고 있음을 알 수 있었다. 또한, 비틀림전단시험(剪斷試驗) 결과로부터 얻어진 파괴강도(破壞强度)는 등방체(等方體)에 제안된 파괴규준(破壞規準)(failure criterion)과 실용적으로 잘 일치하였으며, 전단응력(剪斷應力)과 연직응력(鉛直應力)이 함께 작용될 때 응력(應力)과 변형율(變形率) 사이에 결합효과(結合効果)(coupling effect)가 발생하였다. 마지막으로 비틀림전단시험(剪斷試驗) 결과에 대한 일공간(空間)(work space)개념이 설명되고 응력(應力)과 변형율증분(變形率增分) 사이의 관계가 이 일공간(空間) 상에서 검토되었다.

  • PDF

Shear forces amplification due to torsion, explicit reliance on structural topology. Theoretical and numerical proofs using the Ratio of Torsion (ROT) concept

  • Bakas, Nikolaos
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.15-29
    • /
    • 2017
  • The recently introduced index Ratio Of Torsion (ROT) quantifies the base shear amplification due to torsional effects on shear cantilever types of building structures. In this work, a theoretical proof based on the theory of elasticity is provided, depicting that the ratio of torsion (ROT) is independent of the forces acting on the structure, although its definition stems from the shear forces. This is a particular attribute of other design and evaluation criteria against torsion such as center of rigidity and center of strength. In the case of ROT, this evidence could be considered as inconsistent, as ROT is a function solely of the forces acting on structural members, nevertheless it is proven to be independent of them. As ROT is the amplification of the shear forces due to in-plan irregularities, this work depicts that this increase of internal shear forces rely only on the structural topology. Moreover, a numerical verification of this theoretical finding was accomplished, using linear statistics interpretation and nonlinear neural networks simulation for an adequate database of structures.