• 제목/요약/키워드: torrefaction temperature

검색결과 39건 처리시간 0.031초

음식물·농업폐기물 열분해장치 개발 (Development of a Torrefaction Unit for Food and Agricultural Wastes)

  • 송대빈;임기현;정대홍
    • 농업생명과학연구
    • /
    • 제52권6호
    • /
    • pp.73-79
    • /
    • 2018
  • 본 연구에서는 고수분 음식물 및 농업 폐기물을 재활용한 고형연료 제조에 필요한 열분해장치를 개발하고 실험을 통해 그 성능을 확인하고자 하였다. 연구를 위해 건조용량 50kg/hr인 실험실용 열분해장치를 제작하였다. 건조 처리된 농업폐기물과 음식물 폐기물을 열분해처리용 실험 원료로 사용하였다. 원료종류, 열분해 온도, 열분해 시간에 따른 농업폐기물과 음식물 폐기물의 열분해 특성을 파악하였다. 농업폐기물 건조물의 열분해 처리 결과, 열분해 처리능력은 평균 55.35kg/hr, 저위발열량은 평균 3,333kcal/kg으로 측정되었다. 열분해처리 하지 않은 농업폐기물의 고위발열량은 3,400kcal/kg, 저위발열량은 3,090kcal/kg으로 측정되어 열분해처리로 발열량이 향상됨을 알 수 있었다. 음식물 폐기물 건조물의 열분해 처리 결과, 열분해 처리능력은 평균 88.27kg/hr, 저위발열량은 평균 4,016kcal/kg으로 측정되었다. 열분해처리 하지 않은 음식물 폐기물의 고위발열량은 4,040kcal/kg, 저위발열량은 3,686kcal/kg으로 측정되어 열분해처리로 발열량이 역시 향상됨을 알 수 있다. 열분해 처리능력은 연구목표치인 50kg/hr보다 높게 나타났으며, 저위발열량은 연구목표치인 4,000kcal/kg 보다 다소 높게 나타났다. 다만 저위발열량 측정 기준 함수율이 습량기준으로 약 10%로 추정되는 바 5%로 조절하고, 열분해 열풍온도를 상승시키면 발열량이 더욱 향상될 것으로 판단되었다.

반탄화를 이용한 하수슬러지 연료화에 관한 연구 (A study on the fuel of sewage sludge by torrefaction process)

  • 이윤경;김재형;강설송;김경아;박대원
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.355-361
    • /
    • 2013
  • 본 연구에서는 하수슬러지를 이용하여 높은 에너지 밀도와 균일한 품질의 고형연료 생산을 위해 반탄화 기술을 적용하여 반탄화 생성물의 특성과 에너지원으로서의 가치를 확인하였다. 운전인자로 반응온 도($150-230^{\circ}C$)와 반응시간(10-60분)을 달리한 결과, 반응온도가 높고, 반응시간이 길어질수록 반탄화 생성물의 수분함량은 감소하고, 발열량은 증가하였다. 또한 반응온도 조건의 상승과 함께 탄소의 함량 이 초기 시료(하수슬러지 탈수케이크) 대비 최대 60%까지 증가하였고, 산소와 수소의 함량은 감소하는 경향을 나타내었다. 특히 반응온도 $210^{\circ}C$ 이상에서는 반응시간에 관계없이 평균 발열량 약 4,818 kcal/kg를 나타내었으며, 연료비, 석탄밴드 분석 결과 H/C와 O/C의 원자수비가 낮아져 반탄화를 통해 저등급 석탄에 가까운 연료등급으로 개선되었음을 확인 할 수 있었다.

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.

반탄화 환경변화에 따른 바이오매스의 수분증발에 관한 연구 (Investigation of Water Evaporation from Biomass with Different Torrefaction Environments)

  • 고건영;김만영;이창엽;김세원
    • 대한기계학회논문집B
    • /
    • 제37권10호
    • /
    • pp.901-909
    • /
    • 2013
  • 화석연료의 사용량이 증가함에 따라 전 세계적으로 환경오염문제에 대한 관심이 높아지고 있다. 이에 대한 해결책으로 신재생에너지에 대한 관심이 집중되고 있는 가운데 목질계 바이오매스의 연료화가 그 해결책의 하나로 떠오르고 있다. 따라서 본 연구에서는 목질계 바이오매스의 에너지 효율에 큰 영향을 미치는 수분증발 모델을 제시하고 반탄화 온도, 나무의 수분율, 그리고 바이오매스 종류에 따른 특성을 분석하였다. 그 결과, 반탄화 온도가 상승함에 따라 나무의 온도와 수분율은 빠르게 감소하였다. 그리고 반탄화 온도가 423K 이하인 경우에는 나무 수분율의 변화가 거의 나타나지 않았다. 또한 나무의 초기 수분율이 높을수록 숯(charcoal)이 더 느리게 생성될 뿐만 아니라, 아몬드쉘(almond shell)의 경우 가장 많은 숯이 생성되는 것을 확인하였다.

바이오매스 고형연료의 반탄화 특성 및 반탄화물의 연소특성에 관한 연구 (Study on Torrefaction Characteristics of Solid Biomass Fuel and Its Combustion Behavior)

  • 이원준
    • 유기물자원화
    • /
    • 제23권4호
    • /
    • pp.86-94
    • /
    • 2015
  • 반탄화 공정은 약 $250^{\circ}C$정도의 온도에서 진행되는 열화하적 반응으로, 본 반응에 의하여 바이오매스 중에 포함된 헤미세루로스가 분해되고, 휘발성 가스를 생성하여 분리되는 과정이 진행된다. 바이오매스를 반탄화하는 중요한 이유로는 반탄화에 의하여 에너지 집적도(바이오매스 단위 중량에 포함된 열량)가 증가하게 되어 수송 등에 필요한 열량이 감소하는 장점이 있는 반면, 반탄화의 결과로 생산된 반탄화물은 화재 및 분진 폭발의 위험이 높아지는 단점이 있다. 본 연구에서는 바이오매스 연료 중 목질류로서 자연 건조된 폐목재와 초본류로서는 볏짚을 대상으로 약 $200^{\circ}C{\sim}300^{\circ}C$범위의 온도에서 반탄화 실험을 실시하여 반탄화 후 결과물의 연료적 특성을 평가하였다. 특히 C/H(탄소와 수소 비) 및 C/O(탄소와 산소비)는 연료적 특성 중 생물학적 안정성 및 연소시 오염물질(특히 수트, Soot)과 관계되는 요소로서 중요하다. 실험 결과 반탄화에 의하여 C/H는 약 2배 증가하였으며, C/O는 약 3배 증가하였다. 이는 생물학적 안정성은 감소하여 자연적으로 분해(생분해)가 진행되는 어려운 상태로 변화되었으나, 연료 중 수소의 감소에 의하여 휘발성 가스의 생성은 감소할 수 있는 것을 나타낸다. 한편 탄화된 바이오매스의 TGA(Thermogravimetric Analysis)를 실시한 결과, 저온에서의 진행되는 열분해 부분이 상대적으로 감소하였으며, 이는 단순 바이오매스 연료에 비하여 석탄과 연소 특성이 유사할 수 있는 것으로 나타내었다.

반탄화 과정이 바이오매스 연료의 구조 및 연소성에 미치는 영향 (The Effect of Torrefaction Process on the Structure and Combustion of Biomass Fuel)

  • 정종원;김경민;야누아르 유디 이스워로;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제29권3호
    • /
    • pp.280-291
    • /
    • 2018
  • Torrefaction is one of the methods to increase combustion calorific value and hydrophobicity of biomass. In this study, the effects of torrefaction on devolatilization, char reactivity and biomass structure were analyzed. Empty fruit bunch (EFB) and Kenaf biomass were used as fuels to be torrefied in the N2 environment at 200, 250 and $290^{\circ}C$. Devolatilization and char kinetics were analyzed by using TGA and biomass structure was investigated through petrography image. The reactivity showed different trends depending on the torrefaction temperature and biomass structure. The herbaceous biomass, Kenaf, was shown as high reactivity and thin wall structure. On the contrary, the woody biomass, EFB, had relatively low reactivity and thick wall structure.

낙엽송(Larix kaempferi) 고밀도 에너지화를 위한 반탄화 최적조건 탐색 (Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi))

  • 나병일;안병준;조성택;이재원
    • Korean Chemical Engineering Research
    • /
    • 제51권6호
    • /
    • pp.739-744
    • /
    • 2013
  • 본 연구에서는 낙엽송의 연료특성 향상을 위해 반탄화를 수행하였으며 반응표면분석에 의해 반탄화 최적조건을 탐색하였다. 반탄화는 반응온도($220{\sim}280^{\circ}C$)와 반응시간(20~80분)에 따라 수행하였다. 반탄화 온도가 증가할수록 처리된 바이오매스의 탄소함량은 49.36%에서 56.65%로 증가한 반면, 수소와 산소의 함량은 각각 5.56%에서 5.48%, 37.62%에서 31.67%로 감소하였다. 반탄화 처리 후 바이오매스의 중량감소율 및 발열량은 반탄화 정도(SF)에 따라 증가하였다. 가장 높은 반탄화 정도(SF 7)에서 26.58%의 중량감소율을 나타났으며, 발열량은 22.30 MJ/kg으로 처리 전 바이오매스와 비교하여 20.41% 증가하였다. 에너지수율은 반탄화 정도(SF)가 높아질수록 감소하는 경향을 나타냈으며, 높은 발열량 증가와 낮은 중량감소율에서 가장 높은 에너지수율을 나타냈다(SF 5.72).

고에너지밀도 펠릿제조를 위한 목재칩 반탄화 특성 (Torrefaction Characteristics of Wood Chip for the Production of High Energy Density Wood Pellet)

  • 이재원;김영훈;이수민;이형우
    • Korean Chemical Engineering Research
    • /
    • 제50권2호
    • /
    • pp.385-389
    • /
    • 2012
  • 본 연구에서는 소나무 혼합수종을 이용하여 에너지 밀도 증가, 균일한 품질의 바이오매스 제공을 위해 무산소 조건에서 반탄화를 실시하였다. 반응온도는 240, 260,$280^{\circ}C$로 하여 30분 동안 반응시킨 후 반탄화 바이오매스 특성을 조사하였다. 침엽수혼합수종의 반탄화는 무처리 바이오매스와 비교하여 발열량이 향상되었음을 확인하였다. 반탄화 온도가 증가할수록 반탄화된 바이오매스의 탄소함량은 최대 46.55%에서 55.73%로 증가하였다. 반면 수소와 산소의 함량은 각각 6.00%에서 5.87%, 30.55%에서 27.21%로 감소하였다. 반탄화 과정에서 주로 헤미셀룰로오스와 휘발성 물질이 제거되었다.$280^{\circ}C$에서 30분 동안 반응하였을 때 최대 발열량 5,132 kcal/kg을 나타냈다. 이것은 처리전 바이오매스의 발열량 보다 약 13% 증가하였음을 나타내고 있다. 중량감소율과 에너지수율을 고려하여 비교한 결과 $240^{\circ}C$에서 30분 동안 처리하였을 때 효과적인 반탄화가 이루어졌다.

목질계 바이오매스의 효소당화에서 반탄화 전처리 영향 (Effect of torrefaction on enzymatic saccharification of lignocellulosic biomass)

  • 최효연;박대원
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.1-5
    • /
    • 2015
  • 본 연구는 바이오에탄올을 생산하고자 목질계 바이오매스의 효소당화에서의 반탄화의 영향을 비교분석하였다. 전처리로서, 목질계 바이오매스의 반탄화는 무산소 조건에서 $250{\sim}350^{\circ}C$의 온도로 시행되었다. 또한 비이온성 계면활성제인 Tween-80을 첨가하여 반탄화로 인한 소수성변환에 대처하여 당화효율을 높이기 위한 실험을 진행하였다. 그 결과, 반탄화 전처리한 바이오매스를 효소당화한 후 글루코즈 생산량이 전처리하지 않은 바이오매스의 글루코즈 생산량보다 높았다. 그리고 Tween-80의 첨가하여 효소당화하였을 때 당 전환율이 더 높았다. 이로 인해 반탄화를 목질계 바이오매스의 전처리로 적용할 수 있으며 Tween-80을 첨가하였을 때 효소당화에 영향이 있다는 것을 알 수 있었다.

용탈처리와 습식 반탄화에 의한 Empty Fruit Bunch의 연료적 특성 향상 (Improvement in The Fuel Characteristics of Empty Fruit Bunch by Leaching and Wet Torrefaction)

  • 공성호;이형우;이재원
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권3호
    • /
    • pp.360-369
    • /
    • 2016
  • 본 연구에서는 팜 부산물인 Empty Fruit Bunch (EFB)의 연료적 특성을 향상시키기 위해 용탈처리와 습식 반탄화를 연속적으로 수행하였다. 용탈처리는 $25{\sim}90^{\circ}C$에서 5~30분 수행하였으며, $90^{\circ}C$, 10분 조건에서 55.99%의 가장 높은 회분 감소율을 나타냈다. 회분 감소율은 용탈 시간보다 온도에 따라 영향을 받았다. 용탈처리 후 연속적으로 습식 반탄화를 수행하였으며 반응온도 $180{\sim}200^{\circ}C$, 반응시간 5~40분에서 실시하였다. 연속처리에 의해 규소를 제외한 대부분의 무기성분은 제거되었으며 회분 감소율은 41.05~63.58%로 나타났다. 특히, 염소, 칼륨, 마그네슘, 인 성분은 80%이상 제거되었다. 용탈처리 후 $200^{\circ}C$, 40분에서 습식 반탄화를 수행한 결과 발열량은 원시료(4390 kcal/kg)와 비교하여 7.96% 증가한 4736 kcal/kg를 나타냈다.