• Title/Summary/Keyword: torque loss

Search Result 329, Processing Time 0.024 seconds

CFD Analysis of Marine Propeller-Hub Vortex Control Device Interaction (프로펠러와 허브 보오텍스 조절장치 상호작용 CFD 해석)

  • Park, Hyun-Jung;Kim, Ki-Sup;Suh, Sung_Bu;Park, Ill-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.266-274
    • /
    • 2016
  • Many researchers have been trying to improve the propulsion efficiency of a propeller. In this study, the numerical analysis is carried out for the POW(Propeller Open Water test) performance of a propeller equipped with an energy saving device called PHVC(Propeller Hub Vortex Control). PHVC is aimed to control the propeller hub vortex behind the propeller so that the rotational kinetic energy loss can be reduced. The unsteady Reynolds Averaged Navier-Stokes(URANS) equations are assumed as the governing flow equations and are solved by using a commercial CFD(Computational Fluid Dynamics) software, where SST k-ω model is selected for turbulence closure. The computed characteristic values, thrust, torque and propulsion efficiency coefficients for the target propeller with and without PHVC and the local flows in the propeller wake region are validated by the model test results of KRISO LCT(Large Cavitation Tunnel). It is concluded from the present numerical results that CFD can be a good promising method in the assessment of the hydrodynamic performance of PHVC in the design stage.

NUMERICAL ANALYSIS OF THE FLOW AROUND THE HULL AND THE PROPELLER OF A SHIP ADVANCING IN SHALLOW WATER (천수에서 전진하는 선박의 선체 및 추진기 주위 유동 수치 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.93-101
    • /
    • 2015
  • This paper provides numerical results of the simulation for the flow around the hull and the propeller of KCS model ship advancing in shallow water conditions. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes(RANS) equations, where the wave-making problem is solved by using a volume-of-fluid(VOF) method. The wave formed near the hull surface in shallow water conditions shows a deep trough dominant pattern that causes the loss of buoyancy followed by hull squat. The flow past the hull increases as the depth of water decreases. However, the axial flow velocity around the stern shows a reduction in magnitude by the effect of shallow water accompanied by the hull-propeller interaction. As a results, the thrust and torque coefficient increase about 8.3% and 6.2%, respectively for a depth of h/T=3.0 corresponding to a depth Froude number of $F_h=0.693$. The resistance coefficient increases about 11.6% at this Froude number condition.

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 2 : Flow Characteristics under Cryogenic Condition) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제2부 : 극저온에서의 밸브 유동특성))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Bum-Suk;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • Recently, butterfly valves are used as control valves for industrial process. However, there are not so many reports on cryogenic butterfly valves in spite of broad application in LNG storage station and LNG carriers. Present study is focused on the investigation of the detailed hydrodynamic and aerodynamic characteristics of cryogenic butterfly valves to contribute to the operation during the handling on LNG transportation system, and to the practical utilization in design of butterfly valves and actuators. The results show that large recirculation vortices in the region downstream of the valve are founded and the cavitation flows are intensively generated on the surface of valve disc at the relatively small opening angle. The aerodynamic characteristics, lift, drag and torque, acting on the valve disc are calculated. The pressure distribution and the pressure loss coefficient of the cryogenic butterfly valve show almost similar pattern with those of the butterfly valve which is used on the normal temperature.

Power Circulation Characteristics of Hydro-Mechanical transmission System in Steering (정유압 기계식 변속기의 조향시 동력 순환 특성)

  • Kim, J. S.;Kim, W.;Jung, Y. H.;Jung, S. B.;Kim, H. S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.13-22
    • /
    • 1997
  • Power flow characteristics of a hydro-mechanical transmission system(HMT) are investigated for tracked vehicle in steering. A HMT consisting of two hydrostatic pump motors(HST), several planetary gear trains and steer differential gear is considered. In order to obtain the direction and magnitude of the power flow of the HMT, network theory for the general power transmission is used. Network model for the HMT in steering is developed, which consists of shafts, nodes and transmission elements such as clutch, gear, etc. Power flow analysis procedure consists of two stages : (1) traction force analysis in steering, (2) power flow analysis in HMT. Torque and speed of every transmission element of the HMT is determined from the network analysis. Also, efficiency, mechanical and hydraulic power loss including HST, are obtained. In addition, the regenerative power flow resulting from steering can be studied in graphic display. The power flow analysis program(PCSTEER) developed in this work can be used as a useful design tool for the tracked vehicle with HMT.

  • PDF

Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application (도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석)

  • Choi, Mansoo;Choi, Hyewon;Lee, Changmin;Choi, Hyenjun
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

Development of A New Concept Rotary Engine (I) - Concept and theoretical performance analysis - (신개념 로터리 엔진의 개발 (I) - 개념과 이론적 성능 분석 -)

  • 오문근;이규승;박원엽
    • Journal of Biosystems Engineering
    • /
    • v.28 no.1
    • /
    • pp.27-34
    • /
    • 2003
  • Present combustion engines have reached almost at the limit of development due to the fundamental structural problems. This study was carried out to propose a new concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves. and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement, and performs the functions of intake, compression. expansion and exhaust simultaneously. The results of this study can be summarized as follows. 1. Expected theoretical thermal efficiency is 44.9 percent at the condition of 1000rpm and compression ratio of 8.0. which is almost the same as that of the conventional engines. i.e., piston and Wankel rotary engine. 2. The new concept engine has 2. working strokes in every revolution. Therefore. the new concept engine can reduce the specific weight and volume than four-stroke piston engine. 3. The torque variation is very small. therefore minimal noise and vibration are expectable. 4. The new concept engine can reduce mechanical energy loss than piston engine because neither crank mechanism nor eccentrical motion exists.

The Study for Stress Calculation of Slip Damage between Propeller Boss and Shaft on the Large Vessel (대형선 프로펠러보스 슬립 손상부에 대한 응력 계산에 관한 연구)

  • Baik, Shin-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.291-294
    • /
    • 2011
  • The accident of Slip damage which arose between propeller boss and shaft will be a great problem of safety and economical due to the loss of propulsion power. In this study, the cause of slip damage on the large vessel was surveyed by meeting with officers of troubled ship, checking of drawings on the new built and surveyor report of adjuster company. Additionally, the material of propeller had been compression tested for confirming the impact strength. The result of this studies would be promote the design strength for contact force for keyless propeller, and futhermore reduce the accident of propeller slip between propeller boss and shaft.

A Study on the Flow Analysis of Triple Eccentric Butterfly Valve with Two-way Pressure (양방향 압력에 작동 가능한 3중 편심 버터플라이 밸브의 유동해석에 관한 연구)

  • RYU, M.R.;PARK, H.J.;KIM, J.H.;LEE, D.H.;LEE, S.B.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • The triple eccentric butterfly valve has metal sheet and this study about butterfly valve ceiling is an innovative approach. But it is affected by the static pressure as well as cross-current. The damage at the valve on the pipe resulted from the reflux is due to valve leakage. This study is investigated on the triple eccentric disk and it is applied with angle and the static pressure in all cases to develop cross-current triple eccentric butterfly valves. The disc with the diameter of 300A is valve against flow velocity. The entrance pressure by flow characteristics is performed with numerical analysis. As the result, valve torque production is reduced more than the conventional triple eccentric valve and entrance pressure is decreased on the increase of valve open angle. And flow coefficient can be known to be increased.

A Comparative Study on Diesel Engine Performance with Higher Alcohol-diesel Blends (고탄소알코올/경유 혼합유를 이용한 디젤엔진 성능 특성 비교 )

  • JAESUNG KWON;JEONGHYEON YANG;BEOMSOO KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.767-772
    • /
    • 2023
  • In this study, combustion experiments were conducted at various engine speeds under full-load conditions using a single-cylinder diesel engine by blending butanol, pentanol, and octanol with diesel at a volume ratio of 10%. Experimental results revealed that higher alcohol-diesel blends resulted in lower brake torque and brake power than pure diesel due to the lower calorific value and the cooling effect during evaporation. An evident improvement in the brake thermal efficiency of the blended fuels was observed at engine speeds below 2,000 rpm, with the butanol blend exhibiting the highest thermal efficiency overall. Furthermore, the brake-specific fuel consumption of the higher alcohol-diesel blends was lower than that of pure diesel at speeds below 2,200 rpm. When using blended fuels, the exhaust gas temperature decreased under lean mixture conditions due to heat loss to the air and the cooling effect from fuel evaporation.