• Title/Summary/Keyword: torque loss

Search Result 329, Processing Time 0.026 seconds

Optimal Aerodynamic Design and Performance Analysis for Pitch-Controlled HAWT (가변 피치형 수평축 풍력 터빈의 공력 최적설계 및 피치제어 성능 연구)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.891-898
    • /
    • 2007
  • Optimal aerodynamic design for the pitch-controlled horizontal axis wind turbine and its aerodynamic performance for various pitch angles are performed numerically by using the blade element momentum theory. The numerical calculation includes effects such as Prandtl‘s tip loss, airfoil distribution, and wake rotation. Six different airfoils are distributed along the blade span, and the special airfoil i.e. airfoil of 40% thickness ratio is adopted at the hub side to have structural integrity. The nonlinear chord obtained from the optimal design procedure is linearized to decrease the weight and to increase the productivity with very little change of the aerodynamic performance. From the comparisons of the power, thrust, and torque coefficients with corresponding values of different pitch angles, the aerodynamic performance shows delicate changes for just $3^{\circ}$ increase or decrease of the pitch angle. For precisive pitch control, it requires the pitch control algorithm and its drive mechanism below $3^{\circ}$ increment of pitch angle. The maximum torque is generated when the speed ratio is smaller than the designed one.

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.

A Study on the Volumetric Efficiency Improvement by Variable Induction & Exhaust System in a Turbocharged Diesel Engine (가변 흡.배기시스템에 의한 과급디젤기관의 체적효율 향상에 관한 연구)

  • Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • In this study, a variable induction and exhaust system is applied to turbocharged diesel engine to improve the volumetric efficiency, especially, in a low and transient engine speed range where much of the pollutant matters are expelled out. The volumetric efficiency is known as one of the most important factor which affects significantly engine performance, fuel economy and further emission and noise level. As the torque increase with the engine speed up, the gas flow in an exhaust pipe become pulsating and then has an effect on boost up capacity of air charging into the cylinder and expelling capacity to atmosphere simultaneously. But at a low and idling speed, the pulsation effect was not so significant. Accordingly, resonator was employed to compensate their loss. The variable induction system consists of the secondary pipe, resonator, intercooler, and torque variance were examined with extended operating conditions. In the mean time, for interpretation and well understanding for the phenomena of wave action that arising during intake and exhaust process between turbocharger and variable intake system, the concept of the combined supercharging was introduced. Some of results are depicted which deal with a pressure history during valve events of induction process. Consequently, by the governing of these phase and amplitude of pulsating wave, it enables us to estimate and evaluate for the intake system performance and also, designing stage of the system layout.

  • PDF

Development of Position Sensor Detection Circuit using Hall Effect Sensor (Hall Effect Sensor를 이용한 위치센서 검출회로개발)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.143-149
    • /
    • 2021
  • BLDC motors are getting better performance due to the improvement of material technology including high performance of permanent magnets, advancement of driving IC technology with high integration and high functionality, and improvement of assembly technology such as high point ratio. While having the advantage of such a square wave driven BLDC motor, interest in the design and development of a square wave driven BLDC permanent magnet motor and development of a position detection circuit and driver is increasing in order to more meet the needs of users. However, in spite of the cost and functional advantages due to reduced efficiency, switching loss and vibration, noise, etc., the application is somewhat limited. Therefore, in this paper, we study a position detection circuit that generates a sinusoidal signal in proportion to the magnetic flux of a BLDC motor rotor using a Hall Effect Sensor that generates a sinusoidal wave to increase the efficiency of the motor, reduce ripple, and drive a sinusoidal current with excellent speed and torque characteristics.

A Preliminary Drop Test of a Type IP-2 Transport Package with a Bolted Lid Type (볼트체결방식의 IP-2형 운반용기의 낙하예비시험)

  • Kim Dong-Hak;Seo Ki-seog;Park Hong Yun;Lee Kyung Ho;Yoon Jeong-Hyoun;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.339-347
    • /
    • 2005
  • A type IP-2 transport package should prevent a loss or dispersal of the radioactive contents and a more than $20\%$ increase in the maximum radiation level at any external surface of the package when it were subjected to the drop test under the normal conditions of transport. If a shielding thickness of IP-2 transport package is thick, a bolted lid type may prevent a loss or dispersal of the radioactive contents than the door type of ISO containers which are generally used as a type IP-2 transport package. In this paper, to evaluate the effect of drop directions on the bolt tension and the coherence of a bolt, the drop tests of preliminary small model are tested and evaluated for seven directions before the drop test of a type IP-2 transport package with a bolted lid type under the normal conditions of transport. Seven drop directions which are a bottom-vertical drop, a lid-vortical drop. a horizontal drop and four corner drops have been carried out. Using a force sensor, the bolt tension during the drop impact is measured. The coherence of bolt is evaluated by the difference between the fastening torque of bolt before a drop test and the unfastening torque of bolt after a drop impact.

  • PDF

Cooling Performance on the Small Diesel Engine (소형(小型)디젤기관(機關)의 냉각성능(冷却性能)에 관(關)한 연구(硏究))

  • Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 1990
  • This study was conducted to obtain basic data for the design of cooling system by the test of engine performance of the power tiller being used widely in the rural area. Among the various factors affecting engine performance, the flow rate of cooling water was considered as the major factor in this study. Motoring loss, output, fuel consumption ratio, torque, heat absorption of cooling water, and thermal efficiency were measured and analyzed based on three flow rates of cooling water such as 15, 20, and $25{\ell}/min$. The results obtained were as follows : 1. Motoring loss of the engine was 1.371 kW at 2,200 rpm., and mechanical efficiency was 79.1% at rated output level. 2. Output power of the engine increased with the flow rate of cooling water increased. 3. BSFC was 282.9g/kW-h at the flow rate of $20{\ell}/min$, and the temperature of cooling water at outlet was $80.9^{\circ}C$. 4. There was a little variation of torque of the engine depending on the flow rate of cooling water. 5. Absorption of heat by cooling water was increased with the increase of flow rate. 6. The highest thermal efficiency of 32.3% at the flow rate of $20{\ell}/min$ was observed.

  • PDF

Loss and Heat Transfer Analysis for Reliability in High Speed and Low Torque Surface Mounted PM Synchronous Motors (고속·저토크용 표면부착형 영구자석 동기 전동기의 운전 안정성 확보를 위한 손실 및 열전달 특성 분석)

  • Choi, Moon Suk;Um, Sukkee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.243-254
    • /
    • 2014
  • It is essential to predict the coil temperature under over load and over speed conditions for reliability in high speed low torque surface mounted PM synchronous motors(SPM). In the present study, the losses and coil temperature are measured under rated condition and calculated under over speed and over load conditions in the three different motors with 35PN440, 25PN250 and 15HTH1000. The heat transfer modeling has been performed based on acquired losses and temperature. The difference of coil temperature between heat transfer modeling and experiment is less than 6.4% under no load, over speed and over load conditions. Subsequently, the coil temperature of the motor with 15HTH1000 is 84.4% of the coil temperature of the motor with 35PN440 when speed is 0.9 and load is 3.0. The output of motor with 15HTH1000 is 85.2% greater than the output of the motor with 35PN440 when the dimensionless coil temperature is 1.0.

Effect of the Design Parameters Change on the Hybrid Dynamometer Braking Performance (혼성동력계에서 주요 설계변수가 제동성능에 미치는 효과분석)

  • Lee, Jong-Hoon;Hwang, Jai-Hyuk;Jeong, Min-Ji;Kwon, Jun-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.981-988
    • /
    • 2016
  • Dynamometer is a device for testing the performance of the brake and it is composed of a test zone, the mechanical inertia zone, the electric motor and the control zone. Hybrid dynamometer is a way to compensate for the loss of mechanical inertia in accordance with the brake operation by using an electric motor to reduce the size of the mechanical inertia with the advantage that can be tested in the relatively small size of the mechanical inertia and low cost. In this paper, design the proper size of hybrid dynamometer in the laboratory level with the space constraints, analysed the effect of critical parameter on the braking performance of hybrid dynamometer such as changing the friction coefficient. With this study, could get the results of guideline to judge the poor friction material by measuring the torque of the electric motor to compensate the energy loss due to a reduced mechanical inertia.

Prospective randomized clinical trial of hydrophilic tapered implant placement at maxillary posterior area: 6 weeks and 12 weeks loading

  • Kim, Seong-Beom;Yun, Pil-Young;Kim, Sang-Yun;Yi, Yang-Jin;Kim, Ji-Yun;Kim, Young-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.396-403
    • /
    • 2016
  • PURPOSE. Early loading of implant can be determined by excellent primary stability and characteristic of implant surface. The implant system with recently improved surface can have load application 4-6 weeks after installing in maxilla and mandible. This study evaluated the effect of healing period to the stability of hydrophilic tapered-type implant at maxillary posterior area. MATERIALS AND METHODS. This study included 30 patients treated by hydrophilic tapered-type implants (total 41 implants at maxilla) and classified by two groups depending on healing period. Group 1 (11 patients, 15 implants) was a control group and the healing period was 12 weeks, and Group 2 (19 patients, 26 implants) was test group and the healing period was 6 weeks. Immediately after implant placement, at the first impression taking, implant stability was measured using Osstell Mentor. The patients also took periapical radiographs after restoration delivery, 12 months after restoration and final followup period. The marginal bone loss around the implants was measured using the periapical radiographs. RESULTS. All implants were survived and success rate was 97.56%. The marginal bone loss was less than 1mm after 1 year postoperatively except the one implant. The stabilities of the implants were not correlated with age, healing period until loading, insertion torque (IT), the diameter of fixture and the location of implant. Only the quality of bone in group 2 (6 week) was correlated with the stability of implant. CONCLUSION. Healing period of 6 weeks can make the similar clinical prognosis of implants to that of healing period of 12 weeks if bone quality is carefully considered in case of early loading.

A Comparative Study on the Structural Characteristics of the Novel Two-Phase 8/6 Switched Reluctance Machine (새로운 2상 8/6 SRM의 구조적 특성에 관한 비교 연구)

  • Lee, Cheewoo;Hwang, Hongsik;Oh, Seok-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.315-322
    • /
    • 2017
  • This study presents a novel two­phase eight stator poles and six rotor poles (8/6) switched reluctance machine (SRM) that can compensate for the vibration and noise problems of two­phase 6/3 SRM and compare the characteristics of two SRMs. In the case of two­phase 6/3 SRM, the short flux path and the flux direction inside the stator are not reversed, so they have high efficiency characteristics. However, the use of three rotor poles causes problems of vibration and noise because the radial force applied to the rotor poles is not balance. The proposed two­phase 8/6 SRM has advantages of 6/3 SRM such as the flux­reversal­free stator and it can improve vibration and noise by using six rotor poles due to balanced radial force acting on the rotor poles. In order to make a reasonable comparison between two SRMs, the electromagnetic field structure of 8/6 SRM is designed to have equivalent torque characteristic to 6/3 SRM and then the copper loss and core loss are compared and analyzed. Finally, we compare the effieicney of two SRMs using finite element analysis and compare the distribution of radial force acting on the rotor poles based on Maxwell's stress method.