• Title/Summary/Keyword: torque converter

Search Result 262, Processing Time 0.02 seconds

Improved Direct Torque Control for Sensorless Matrix Converter Drives with Constant Switching Frequency and Torque Ripple Reduction

  • Lee Kyo-Beum;Blaabjerg Frede
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • In this paper, an improved direct torque control (DTC) method for sensorless matrix converter drives is proposed which enables to minimize torque ripple, to obtain unity input power factor, and to achieve good sensorless speed-control performance in the low speed operation, while maintaining constant switching frequency and fast torque dynamics. It is possible to combine the advantages of matrix converters with the advantages of the DTC strategy using space vector modulation and a flux deadbeat controller. To overcome the phase current distortion by the non-linearity of a matrix converter drive, the simple non-linearity compensation method using PQR power theory are presented in the proposed scheme. Experimental results are shown to illustrate the feasibility of the proposed strategy.

Performance Analysis of a Torque Converter with Three Dimensional Flow Simulation (3차원 유동해석을 통한 토크 컨버터의 성능분석)

  • Shin, S.S.;Ahn, H.H.;Lee, T.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.15-23
    • /
    • 1998
  • A three dimensional simulation of the fluid flow in an automotive torque converter was conducted adopting the mixing plane model implemented in the computational fluid dynamics program CFD-ACE. The present numerical results for performance characteristics showed a good agreement with the experimental results. In the flow of the torque converter, recirculating flow regimes were found mostly at the suction side of each element, which caused the performance decrease. The recirculating flow can be minimized by the optimization of the blade geometries.

  • PDF

Direct Instantaneous Torque Control of SRM using 4-level Converter (4-레벨 콘버터를 이용한 SRM의 순시 토오크 제어 기법)

  • Lee, Dong-Hee;Lee, Sang-Hun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • This paper presents a direct instantaneous torque control (DITC) of Switched Reluctance Motor (SRM) with a novel 4-level converter to develop a uniform torque and to improve a dynamic performance. The DITC method can reduce a high torque ripple of SRM. Drive efficiency and dynamic performance with conventional drive are low due to a slow excitation current build-up. Since the 4-level converter can obtain an addition boosted voltage to have a fast excitation and demagnetization, it can Improve dynamic performance and efficiency easily. To apply the DITC technique to a 4-level converter, a novel control scheme is presented according to the operating modes. Additionally, selection of capacitances of boosted capacitor and efficiency improvement of 4-level converter are analyzed. At last, the validity of proposed method is verified by some computer simulations md comparative experiments.

Analysis of Shifting Transients with Emphasis on the Modeling of a Torque Converter (토크 컨버터의 모델링을 중심으로 한 변속과도 특성해석)

  • 임원식;박영일;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • The torque converter, an important component of automatic transmissions, is a hydrodynamic device which has a great influence on transient characteristics of vehicle during shift. To predict the accurate driving performance in extremely transient state such as shifting process, a detailed analysis of the torque converter is required. In this study, one dimensional performance model of the torque converter based on the concept of mean flow path, was used to analyze the shifting transients and the exact values of equivalent parameters were determined from the experimental results by using BOX program. The dynamic modelings of the components of power transmission systems such as engines, planetary gear systems, clutches and one-way clutches, were carried out. To analyze the shifting transients of tracked vehicle, a simulation program was developed. In the modeling of power transmission systems, the stiffness of shafts was neglected and shifting control logic(TCU) was included. Using the developed simulation program, the driving conditions were simulated and the results of simulation were verified through the experiments on the dynamometer.

DITC of SRM using 4-Level Converter (4-레벨 컨버터 구동 방식에 의한 SRM DITC 제어)

  • Liang, Jianing;Lee, Zhen-Guo;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.99-102
    • /
    • 2006
  • This paper proposes a DITC(Direct Instantaneous Torque Control of SRM (Switched Reluctance Motor) using a novel 4-level converter for smooth torque control and high efficiency. DITC of SRM is very useful for smooth torque control, but the driving efficiency is low due to advanced current that does not produce torque. For the high efficiency control of SRM, fast excitation and demagnetization of phase current are required. A novel 4-level converter and a new control scheme are present to improve the driving efficiency. The proposed DITC of SRM using 4-level converter is verified by computer simulation.

  • PDF

RESEARCH STUDY ON THE COMPARSION OF TORQUE CONVERTER AND STATIC CONVERTER FOR GAS TURBINE POWER PLANT (복합 화력 발전소에서의 유체 토오크 컨버터와 전기식 가변속장치의 비교에 관한 연구)

  • Hur, Sung-Kwang;Rhew, Hong-Woo;Han, Kyung-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.899-901
    • /
    • 1993
  • LARGE SYNCHRONOUS GENERATORS USED IN CONNECTION WITH COMPRESSOR, TURBINE, IN MOST CASE, NEED THE HELP OF AN ELECTRICAL DRIVES FOR STARTING IN GAS TURBINES. NOWDAYS, THE STATIC FREQUENCE CONVERTER STARTING SYSTEM is EMPLOYED IN POWER PLANT. THIS PAPER DESCRIBES TORQUE CONVERTER, STATIC FREQUENCY CONVERTER AND COMPARSION OF TWO SYSTEMS.

  • PDF

An Improved Predictive Control of an Induction Machine fed by a Matrix Converter for Torque Ripple Reduction (토크 리플 저감을 위한 매트릭스 컨버터 구동 유도 전동기의 향상된 예측 제어 기법)

  • Lee, Eunsil;Choi, Woo Jin;Lee, Kyo-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.662-668
    • /
    • 2015
  • This paper presents an improved predictive control of an induction machine fed by a matrix converter using N-switching vectors as the control action during a complete sampling period of the controller. The conventional model predictive control scheme based matrix converter uses a single switching vector over the same period which introduces high torque ripple. The proposed switching scheme for a matrix converter based model predictive control of an induction machine drive selects the appropriate switching vectors for control of electromagnetic torque with small variations of the stator flux. The proposed method can reduce the ripple of the electrical variables by selecting the switching state as well as the method used in the space vector modulation techniques. Simulation results are presented to verify the effectiveness of the improved predictive control strategy for induction machine fed by a matrix converter.

Torque Predictive Control for Permanent Magnet Synchronous Motor Drives Using Indirect Matrix Converter

  • Bak, Yeongsu;Jang, Yun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1536-1543
    • /
    • 2019
  • This paper presents an improved torque predictive control (TPC) for permanent magnet synchronous motors (PMSMs) using an indirect matrix converter (IMC). The IMC has characteristics such as a high power density and sinusoidal waveforms of the input-output currents. Additionally, this configuration does not have any DC-link capacitors. Due to these advantages of the IMC, it is used in various application field such as electric vehicles and railway cars. Recently, research on various torque control methods for PMSM drives using an IMC is being actively pursued. In this paper, an improved TPC method for PMSM drives using an IMC is proposed. In the improved TPC method, the magnitudes of the voltage vectors applied to control the torque and flux of the PMSM are adjusted depending on the PMSM torque control such as the steady state and transient response. Therefore, it is able to reduce the ripples of the output current and torque in the low-speed and high-speed load ranges. Additionally, the improved TPC can improve the dynamic torque response when compared with the conventional TPC. The effectiveness of the improved TPC method is verified by experimental results.

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.