• 제목/요약/키워드: torque controllers

검색결과 146건 처리시간 0.027초

직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템 (A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction)

  • 김남훈;김민호;김민회;김동희;황돈하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템 (A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 전기학회논문지P
    • /
    • 제51권1호
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

직접 토크제어에 의한 리럭턴스 동기전동기의 위치제어 시스템 (A Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호;김동희;이상호;황돈하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.23-26
    • /
    • 2001
  • This paper presents a digital motion control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consists of stator flux observer, torque estimator: two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter(VSI), and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current, voltage and actual rotor angle for wide speed range. In order to prove the suggested motion control algorithm, There are some simulation and testing at actual experimental system. The developed digitally high-performance motion control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 위치제어 시스템 (A High-Performance Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;최경호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권3호
    • /
    • pp.150-157
    • /
    • 2002
  • This paper presents preliminarily an implementation of digital high-performance motion control system of Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320F240 DSP controller made by Texas Instruments. The stator fluff observer is based on the combined voltage and current model with stator flux feedback adaptive control, and the input of the observer are the stator voltage and current of motor terminal for wide speed range. The rotor position and speed sensor used 6000 pulse/rev encoder. In order to prove rightness of the suggested control algorithm, we have some simulation and actual experimental system at $\pm$20 and $\pm$2000 rpm. The developed digitally high-performance motion control system+ are shown a good response characteristic of control results and high performance features using 1.0kW RSM which has 2.57 Ld/Lq salient ratio.

의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가 (A Haptic Master-slave Robot System : Experimental Performance Evaluation for Medical Application)

  • 오종석;신원기;프엉박;엄창호;최승복
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.41-48
    • /
    • 2013
  • In this work, 4-DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery(MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4-DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

의료용 햅틱 마스터-슬레이브 로봇 시스템 : 실험적 성능 평가 (A Haptic Master-Slave Robot System : Experimental Performance Evaluation for Medical Application)

  • 오종석;신원기;프엉박;엄창호;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.421-427
    • /
    • 2012
  • In this work, 4 DOF ER haptic master is proposed and integrated with a slave robot for minimally invasive surgery (MIS). Using a controllable ER fluid, the haptic master can generate a repulsive force/torque with the 4-DOF motion. For realization of master-slave robot system, the motion command of the haptic master is realized by slave surgery robot. In order to follow the 4 DOF motion of the haptic master, novel mechanism of slave surgery robot with gimbal joint is devised. Accordingly, the haptic master-slave robot system is established by incorporating the slave robot with the haptic master device in which the desired repulsive force/torque and position are transferred to each other via wireless communications. In order to obtain the desired force/torque and position trajectories, tracking controllers for haptic master and slave robot are designed and implemented, respectively. It has been demonstrated that the desired effective torque tracking control performance is well achieved using the proposed haptic master-slave robot system.

  • PDF

직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템 (A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;김민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

High-Performance Elevator Traction Using Direct Torque Controlled Induction Motor Drive

  • Arafa, Osama Mohamed;Abdallah, Mohamed Elsayed;Aziz, Ghada Ahmed Abdel
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1156-1165
    • /
    • 2018
  • This paper presents a detailed realization of direct torque controlled induction motor drive for elevator applications. The drive is controlled according to the well-known space vector modulated direct control scheme (SVM-DTC). As the elevator drives are usually equipped with speed sensors, flux estimation is carried out using a current model where two stator currents are measured and accurate instantaneous rotor speed measurement is used to overcome the need for measuring stator voltages. Speed profiling for a comfortable elevator ride and other supervisory control activities to provide smooth operation are also explained. The drive performance is examined and controllers' parameters are fine-tuned using MATLAB/SIMULINK. The blocks used for flux and torque estimation and control in the offline simulation are compiled for real-time using dSPACE Microlabox. The performance of the drive has been verified experimentally. The results show good performance under transient and steady state conditions.

직접 토크제어에 의한 리럭턴스 동기 전동기의 센서리스 제어시스템 (A Sensorless control system of Reluctance Synchronous Motor with Direct Torque Control)

  • 김민회;김남훈;백원식;김동희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.161-164
    • /
    • 2001
  • This paper presents a digital speed sensorless control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor speed estimator, torque estimator two hysteresis band controllers, an optimal switching look-up table. IGBT voltage source inverter, and TMS320C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor speed is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. In order to prove the suggested speed sensorless control algorithm. There are some simulation and testing at actual experimental system. The developed digitally high- performance speed sensorless control system are shown a good speed control response characteristic results and high Performance features using 1.0Kw RSM.

  • PDF