• 제목/요약/키워드: torque controllers

검색결과 146건 처리시간 0.03초

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

Sliding Mode Controller for Torque and Pitch Control of PMSG Wind Power Systems

  • Lee, Sung-Hun;Joo, Young-Jun;Back, Ju-Hoon;Seo, Jin-Heon;Choy, Ick
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.342-349
    • /
    • 2011
  • We propose a torque and pitch control scheme for variable speed wind turbines with permanent magnet synchronous generator (PMSG). A torque controller is designed to maximize the power below the rated wind speed and a pitch controller is designed to regulate the output power above the rated wind speed. The controllers exploit the sliding mode control scheme considering the variation of wind speed. Since the aerodynamic torque and rotor acceleration are difficult to measure in practice, a finite time convergent observer is designed which estimates them. In order to verify the proposed control strategy, we present stability analysis as well as simulation results.

토크 한계를 갖는 불확실한 로봇 매니퓰레이터의 퍼지 논리를 이용한 강인 제어기의 설계 (Design of a Robust Controller for Uncertain Robot Manipulators with Torque Saturation using a Fuzzy Algorithm)

  • 최형식;박재형
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.138-144
    • /
    • 2000
  • Robot manipulators, which are nonlinear structures and have uncertain system parameters, have complex in dynamics when are operated in unknown environment. To compensate for estimate errors of the uncertain system parameters and to accomplish the desired trajectory tracking, nonlinear robust controllers are appropriate. However, when estimation errors or tracking errors are large, they require large input torques, which may not be satisfied due to torque limits of actuators. As a result, their stability can not be guaranteed. In this paper, a new robust control scheme is presented to solve stability problem and to achieve fast trajectory tracking in the presence of torque limits. By using fuzzy logic, new desired trajectories which can be reduced are generated based on the initial desired trajectory, and torques of the robust controller are regulated to not exceed torque limits. Numerical examples are shown to validate the proposed controller using an uncertain two degree-of-freedom underwater robot manipulator.

  • PDF

로봇 매니퓰레이터의 포화요소를 갖는 퍼지견실 제어 (A Fuzzy Robust Controller with Saturation for Robot Manipulators)

  • Park, H.S.
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.104-109
    • /
    • 1997
  • A robust controller design to corrdinate a robot manipulator under unknown system parameters and bounded disturbance inputs is presented in this paper. Generally, robust controllers require high input torque so that they may face input saturation in actual application due to the power limitation of the actuator. To solve this problem, an improved robust controller with saturated input torque using a fuzzy logic control is proposed. Numerical examples are shown to validate the proposed controller using two degree-of-freedom planar arm.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

Switching Angle Control of a High Speed Switched Reluctance Motor using an FPGA Circuit

  • Park, Changhwan;Kim, Vongdae;Park, Kyihwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.152.1-152
    • /
    • 2001
  • This paper presents a high performance and cost effective way by using an FPGA circuit to implement torque controller so that the SRM can operate at high speed. In order to increase the operating speed, we need to implement both the torque and the current controllers by using an FPGA. However, it is difficult to implement all of the torque controller in the FPGA. Moreover, implementation of a time critical part is sufficient for improving the performance. One of the time critical part is the switching angle control. In this study, torque controller which calculate the switching on and commutation angles is implemented in PC because these angle are a function of rotor velocity which is varied slowly, and switching angle controller ...

  • PDF

3자유도 로봇의 하이브리드 위치/힘 제어 (Hybrid Position/Force Control of 3 DOF Robot)

  • 양선호;박태욱;양현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

직접 토크제어에 의한 속도검출기 없는 유도전동기 제어시스템 (A Speed Sensorless Induction Motor Control System with Direct Torque Control system)

  • 김남훈;김민호;김민회;김동희;최경호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.281-284
    • /
    • 2001
  • This paper presents implementation of digitally speed sensorless control system for induction motor with a direct torque control(DTC) using 32bit DSP TMS320C31. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, MRAS with rotor flux linkages for the speed turning signal, two hysteresis controllers, optimal switching look-up table and IGBT voltage source inverter. There are suggested a control algorithm and system, and given simulation and implementation results on the 2.2Kw general purposed induction motor.

  • PDF

PWM 기법을 적용한 SRM의 직접토크 제어 특성 (A Direct Torque Control Characteristics of SRM using PWM Approach)

  • 이동희;왕혜군;안진우
    • 전력전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.179-185
    • /
    • 2008
  • 본 논문에서는 SRM의 토크리플 억제를 위하여 PWM(Pulse width modulation)과 직접토크제어(DITC, Direct Instantaneous Torque Control) 방식의 결합에 의한 제어방식을 제안하였다. 기존의 직접토크제어와 달리, 제안된 방식은 한 샘플링 구간 내에서 하나 또는 두 개의 스위칭 모드로 동작하며, 스위칭 패턴의 폭은 토크 오차와 직접 토크제어 방식의 제어규칙에 따라 제어된다. 또한 실제 스위치의 제어폭이 토크 오차에 따라 가변적으로 제어됨으로써, 같은 샘플링 주기에서 기존의 직접토크제어 방식에 비하여 토크리플을 크게 억제할 수 있으며, 토크 연산의 샘플링 주기를 크게 할 수도 있는 장점이 있다. 간단한 제어규칙과 PWM 듀티비의 계산으로 복잡한 연산이 요구되지 않으므로 저가의 마이크로 프로세서에 의해 구현이 가능하다. 제안된 방식은 컴퓨터 시뮬레이션과 실험을 통하여 검증하였다.

A Novel Seamless Direct Torque Control for Electric Drive Vehicles

  • Ghaderi, Ahmad;Umeno, Takaji;Amano, Yasushi;Masaru, Sugai
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.449-455
    • /
    • 2011
  • Electric drive vehicles (EDV) have received much attention recently because of their environmental and energy benefits. In an EDV, the motor drive system directly influences the performance of the propulsion system. However, the available DC voltage is limited, which limits the maximum speed of the motors. At high speeds, the inverter voltage increases if the square wave (SW) voltage (six-step operation) is used. Although conventional direct torque control (DTC) has several advantages, it cannot work in the six-step mode required in high-speed applications. In this paper, a single-mode seamless DTC for AC motors is proposed. In this scheme, the trajectory of the reference flux changes continuously between circular and hexagonal paths. Therefore, the armature voltage changes smoothly from a high-frequency switching pattern to a square wave pattern without torque discontinuity. In addition, because multi-mode controllers are not used, implementation is more straightforward. Simulation results show the voltage pattern changes smoothly when the motor speed changes, and consequently, torque control without torque discontinuity is possible in the field weakening area even with a six-step voltage pattern.