• Title/Summary/Keyword: torque compensation

Search Result 248, Processing Time 0.042 seconds

Dynamic Compliance and its Compensation Control of HIVC Force Control System

  • Ba, Kai-xian;Yu, Bin;Li, Wen-feng;Wang, Dong-kun;Liu, Ya-liang;Ma, Guo-liang;Kong, Xiang-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.1008-1020
    • /
    • 2018
  • In this paper, the dynamic compliance and its compensation control of the force control system on the highly integrated valve-controlled cylinder (HIVC), the joint driver of the hydraulic drive legged robot, is researched. During the robot motion process, the outer loop dynamic compliance control is applied on the base of hydraulic control inner loop and most inner loop control are the force or torque closed loop control. While the dynamic compliance control effectiveness of outer loop can be affected by the inner loop self-dynamic-compliance. Based on this problem, the dynamic compliance series composition theory of HIVC force control system as well as the analysis of its self-dynamic-compliance is proposed. And then the paper comes up with the compliance-enhanced control, which is a compound compensation control method of dynamic compliance with multiple series branches. Finally, the experiment results indicate that the control method mentioned above can enhance the dynamic compliance of HIVC force control system observably. This provides the compensation control method of inner loop dynamic compliance for the outer loop compliance control requiring the high accuracy and high robustness for the robot.

Precise position control of hydraulic driven stenciling robot using neural network (신경회로망을 이용한 유압 스텐슬링 로봇의 정확한 위치 제어)

  • Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.779-782
    • /
    • 1997
  • In this paper, accurate position control of a stenciling robot manipulator is designed. The stenciling robot is requried to draw lines and characters on the pavement. Since the robot is huge and heavy, the inertia is expected to play a major role in the tracking performance as desired. Here we are proposing neural network control scheme for a computed-torque like controller for the stenciling robot. On-line compensation is achieved by neural network. Simulation studies with stenciling robot are carried out to test the performance of the proposed control scheme.

  • PDF

A Study of propulsion control algorithm of Tilting Train eXpress (틸팅 열차 추진시스템의 제어 알고리즘에 관한 연구)

  • Kim Hyung-Chul;Choi Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.800-805
    • /
    • 2005
  • In this study, control schemes are proposed for a propulsion system of TTX(Tilting Train eXpress). In developed traction converter, unity power factor control, compensation method of dc link voltage have been applied. Output current of converter contains harmonic ripple at twice input ac line frequency, which causes a ripple in the dc link voltage so that beatless control is developed in inverter system to reduce the pulsating torque current. This system is verified by the system modelling and prototype test.

  • PDF

Compensation Algorithm for Periodic Torque Ripple of AC Motor (교류전동기의 주기적인 토크리플 보상알고리즘)

  • Kim Byong-Seob;Choi Jong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.331-332
    • /
    • 2006
  • 교류 전동기는 전류의 측정오차와 데드타임 등의 영향으로 전기각 주파수에 동기된 주기적인 토크 리플이 발생한다. 본 논문에서는 주기적인 토크리플 보상 알고리즘을 제안한다. 보상기는 속도리플 관측기와 토크리플 보상기로 나누어진다. 본 논문에서는 토크리플 보상기의 해석을 통해 정상상태에서 속도 리플이 제거됨을 증명하였고 속도리플 관측기는 속도의 리플을 검출하여 토크리플 보상기를 통해 토크리플 성분이 보상됨을 시뮬레이션과 실험을 통해 검증하였다.

  • PDF

Torque Ripple Compensation Scheme Based on Current Prediction for Low-inductance BLDC Motor Drives (전류예측 기반 저인덕턴스 BLDC 전동기의 토크 리플 저감)

  • Park, Do-Hyeon;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.148-149
    • /
    • 2017
  • 본 논문에서는 인덕턴스가 작은 BLDC 전동기에서 상전환 시에 나타나는 토크 리플을 저감하는 기법을 제안한다. BLDC 전동기의 홀센서 신호전환 시점에서 상전류를 예측하고 이 전류가 지령치에 미치지 못할 경우 지령전류를 보정하여 스위칭의 듀티비를 새로 계산한다. 제안된 기법은 실험으로 검증된다.

  • PDF

Detent Torque Compensation Method for Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 디텐트 토크 보상 기법)

  • Kim, Do-Hyun;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.441-442
    • /
    • 2020
  • 본 논문에서는 2상 하이브리드 스테핑 모터의 디텐트 토크 보상 기법을 제안하였다. 2상 하이브리드 스테핑 모터의 회전자 좌표계 d,q축 전압 방정식 및 토크 식으로부터 지령 토크 발생을 위해 필요한 d,q축 전류를 지령으로 사용하며, 디텐트 토크로 인해 발생하는 속도 리플을 제거하기 위해 리플 크기를 추출하여 전류지령에 보상하였다. Matlab/Simulink를 이용한 2상 하이브리드 스테핑 모터 구동 시뮬레이션을 통해 제안된 기법의 유효성을 확인하였다.

  • PDF

Adaptive Compensation Technique of Parameter Variation for Quick Torque Response of an Induction Motor Drive (유도전동기의 속응 토크제어를 위한 파라미터 변동의 적응보상기법)

  • 손진근;정을기;김준환;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • In this paper, an adaptive compensation technique for parameter variation is proposed which can perform quick torque response in vector control of an induction motors. To solve the problem of control performance degradation due to parameter variation in an induction motor, a rotor resistance estimation is performed by the model reference adaptive control(MRAC). The algorithm of rotor resistance estimation is composed of the error relationship which is generated between a motor real instantaneous reactive power and an estimated instantaneous reactive power. The advantage of such a real reactive power reference model is independence of the motor parameter variation. The estimation rotor resistance values are applied to the direct vector control system with a flux observer. Finally, the simulations and experiment are presented to validate the rotor resistance estimation algorithm of induction motor.

  • PDF

Proportional Resonant Feedforward Contrl Algorithm for Speed Ripple Reduction of 3-phase SPMSM (3상 영구자석 동기전동기의 속도 맥동 저감을 위한 비례공진 전향보상 제어 알고리즘)

  • Lee, Seon-Yeong;Hwang, Seon-Hwan;Kim, Gyung-Yub;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1104-1108
    • /
    • 2020
  • This paper propose a variable proportional resonant feedforward algorithm for reducing the speed ripple of a three-phase permanent magnet synchronous motor. In general, the torque ripples can be generated by electrical pulsation due to current measurement errors and dead time and mechanical pulsation because of rotor eccentricity and eccentric load. These torque pulsations can cause speed pulsations of the motor and degrade the operating performance of the motor drive system. Therefore, in this paper, the factors of the speed ripple is analyzed and an algorithm to reduce the speed ripple is proposed. The proposed algorithm applied a variable proportional resonant controller in order to reduce the specific operating frequency included in the speed pulsation, and utilized a feedforward compensation controller structure to perform the compensation operation. The proposed algorithm is verified through various experiments.

Precision Speed Control of PMSM for Stimulation of the Vestibular System Using Rotatory Chair (전정기관 자극용 회전자극기를 취한 PMSM의 정밀 속도제어)

  • 고종선;이태호;박병림;전칠환
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.459-466
    • /
    • 2000
  • A new control method for precision robust speed control of a PMSM(Permanent Magnet Synchronous Motor) using load torque observer is presented. Using this system, we can more precisely evacuate of vestibular function. Until now a rotating chair system, so called 2D-stimulator, which has vertical rotate axis is used to make dizziness. However, an inclined rotating chair system witch is called 3D-stimulator is needed to obtain the precise dizziness data. This 3D-stimulator include unbalanced load caused by unbalanced center of mass. In this case, new compensation method is considered to obtain robust speed control using load torque observer. To reduce the effect of this disturbance, we can use dead-beat observer that has high gain. The application of the load to torque observer is published in for position control. However, there is a problem of using speed information such as amplifying effect of noise. Therefore, we can reduce a noise effect by moving average process. The experimental results are depicted in this paper to show the effect of this proposed algorithm.

  • PDF

Real-Time Compensation Method of Current Measurement Error in Vector-Controlled Inverter for Induction Motor (유도전동기용 벡터제어 인버터에서 전류측정 오차의 실시간 보상 방법)

  • Kim, Ji-Hoon;Yoon, Duck-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1685-1690
    • /
    • 2014
  • This paper proposes a novel method to compensate for the measurement errors in detecting phase currents for vector-controlled inverter in real-time. The output torque equations for 3-phase induction motor are derived in terms of offset error and transducing gain error in current measurement circuits, and the equations shows that motor output torque has many ripples due to current measurement errors. Especially, if the proposed method is applied to vector-controlled inverter, the torque ripple by transducing gain error can be reduced in real-time at running state of motor. To verify the proposed method, it was applied to vector-controlled inverter for 3-phase induction motor of 200[W] and computer simulation and experimentation were carried out.