• Title/Summary/Keyword: toroidal shells

Search Result 5, Processing Time 0.017 seconds

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Free vibration analysis of moderately-thick and thick toroidal shells

  • Wang, X.H.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.449-463
    • /
    • 2011
  • A free vibration analysis is made of a moderately-thick toroidal shell based on a shear deformation (Timoshenko-Mindlin) shell theory. This work represents an extension of earlier work by the authors which was based on a thin (Kirchoff-Love) shell theory. The analysis uses a modal approach in the circumferential direction, and numerical results are found using the differential quadrature method (DQM). The analysis is first developed for a shell of revolution of arbitrary meridian, and then specialized to a complete circular toroidal shell. A second analysis, based on the three-dimensional theory of elasticity, is presented to cover thick shells. The shear deformation theory is validated by comparing calculated results with previously published results for fifteen cases, found using thin shell theory, moderately-thick shell theory, and the theory of elasticity. Consistent agreement is observed in the comparison of different results. New frequency results are then given for moderately-thick and thick toroidal shells, considered to be completely free. The results indicate the usefulness of the shear deformation theory in determining natural frequencies for toroidal shells.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

Development of finite element analysis program and simplified formulas of bellows and shape optimization (벨로우즈에 대한 유한요소해석 프로그램 및 간편식의 개발과 형상최적설계)

  • Koh, Byung-Kab;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1195-1208
    • /
    • 1997
  • Bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axial symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis is developed to analyze various bellows. The validity of the developed program is verified by the experimental results for axial and lateral stiffness. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. The shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function by weighting factors. The stiffness, strength and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is selected to solve the problem. The results are compared to existing bellows, and the characteristics of bellows is investigated through optimal design process. The optimized shape of bellows is expected to give quite a good guideline to practical design.