• 제목/요약/키워드: topological robotics

검색결과 37건 처리시간 0.02초

초음파 격자 지도를 이용한 위상학적 지도 작성 기법 개발 (Topological Modeling using Sonar Grid Map)

  • 최진우;최민용;정완균
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.189-196
    • /
    • 2011
  • This paper presents a method of topological modeling using only low-cost sonar sensors. The proposed method constructs a topological model by extracting sub-regions from the local grid map. The extracted sub-regions are considered as nodes in the topological model, and the corresponding edges are generated according to the connectivity between two sub-regions. A grid confidence for each occupied grid is evaluated to obtain reliable regions in the local grid map by filtering out noisy data. Moreover, a convexity measure is used to extract sub-regions automatically. Through these processes, the topological model is constructed without predefining the number of sub-regions in advance and the proposed method guarantees the convexity of extracted sub-regions. Unlike previous topological modeling methods which are appropriate to the corridor-like environment, the proposed method can give a reliable topological modeling in a home environment even under the noisy sonar data. The performance of the proposed method is verified by experimental results in a real home environment.

Topological SLAM Based on Voronoi Diagram and Extended Kalman Filter

  • Choi, Chang-Hyuk;Song, Jae-Bok;Kim, Mun-Sang;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.174-179
    • /
    • 2003
  • Through the simultaneous localization and map building (SLAM) technique, a robot can create maps about its unknown environment while it continuously localizes its position. Grid maps and feature maps have been widely used for SLAM together with application of probability methods and POMDP (partially observed Markov decision process). But this approach based on grid maps suffers from enormous computational burden. Topological maps, however, have drawn more attention these days because they are compact, provide natural interfaces, and are easily applicable to path planning in comparison with grid maps. Some topological SLAM techniques like GVG (generalized Voronoi diagram) were introduced, but it enables the robot to decide only whether the current position is part of GVG branch or not in the GVG algorithm. In this paper, therefore, to overcome these problems, we present a method for updating a global topological map from the local topological maps. These local topological maps are created through a labeled Voronoi diagram algorithm from the local grid map built based on the sensor information at the current robot position. And the nodes of a local topological map can be utilized as the features of the environment because it is robust in light of visibility problem. The geometric information of the feature is applied to the extended Kalman filter and the SLAM in the indoor environment is accomplished. A series of simulations have been conducted using a two-wheeled mobile robot equipped with a laser scanner. It is shown that the proposed scheme can be applied relatively well.

  • PDF

CERTAIN TOPOLOGICAL METHODS FOR COMPUTING DIGITAL TOPOLOGICAL COMPLEXITY

  • Melih Is;Ismet Karaca
    • Korean Journal of Mathematics
    • /
    • 제31권1호
    • /
    • pp.1-16
    • /
    • 2023
  • In this paper, we examine the relations of two closely related concepts, the digital Lusternik-Schnirelmann category and the digital higher topological complexity, with each other in digital images. For some certain digital images, we introduce κ-topological groups in the digital topological manner for having stronger ideas about the digital higher topological complexity. Our aim is to improve the understanding of the digital higher topological complexity. We present examples and counterexamples for κ-topological groups.

실제 실내 환경에서 이동로봇의 위상학적 위치 추정 (Topological Localization of Mobile Robots in Real Indoor Environment)

  • 박영빈;서일홍;최병욱
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.25-33
    • /
    • 2009
  • One of the main problems of topological localization in a real indoor environment is variations in the environment caused by dynamic objects and changes in illumination. Another problem arises from the sense of topological localization itself. Thus, a robot must be able to recognize observations at slightly different positions and angles within a certain topological location as identical in terms of topological localization. In this paper, a possible solution to these problems is addressed in the domain of global topological localization for mobile robots, in which environments are represented by their visual appearance. Our approach is formulated on the basis of a probabilistic model called the Bayes filter. Here, marginalization of dynamics in the environment, marginalization of viewpoint changes in a topological location, and fusion of multiple visual features are employed to measure observations reliably, and action-based view transition model and action-associated topological map are used to predict the next state. We performed experiments to demonstrate the validity of our proposed approach among several standard approaches in the field of topological localization. The results clearly demonstrated the value of our approach.

  • PDF

이동로봇의 주행을 위한 토폴로지컬 지도의 작성 (Topological Map Building for Mobile Robot Navigation)

  • 최창혁;이진선;송재복;정우진;김문상;박성기;최종석
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.492-497
    • /
    • 2002
  • Map building is the process of modeling the robot's environment. The map is usually built based on a grid-based or topological approach, which has its own merits and demerits. These two methods, therefore, can be integrated to provide a better way of map building, which compensates for each other's drawbacks. In this paper, a method of building the topological map based on the occupancy grid map through a Voronoi diagram is presented and verified by various simulations. This Voronoi diagram is made by using a labeled Voronoi diagram scheme which is suitable for the occupancy grid maps. It is shown that the Proposed method is efficient and simple fur building a topological map. The simple path-planning problem is simulated and experimented verify validity of the proposed approach.

위상학적 공간 인식을 위한 효과적인 초음파 격자 지도 매칭 기법 개발 (Effective Sonar Grid map Matching for Topological Place Recognition)

  • 최진우;최민용;정완균
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.247-254
    • /
    • 2011
  • This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment.

위상정보를 갖는 구배법에 기반한 이동로봇의 고속 경로계획 (High-Speed Path Planning of a Mobile Robot Using Gradient Method with Topological Information)

  • 함종규;정우진;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.444-449
    • /
    • 2006
  • Path planning is a key element in navigation of a mobile robot. Several algorithms such as a gradient method have been successfully implemented so for. Although the gradient method can provide the global optimal path, it computes the navigation function over the whole environment at all times, which result in high computational cost. This paper proposes a high-speed path planning scheme, called a gradient method with topological information, in which the search space for computation of a navigation function can be remarkably reduced by exploiting the characteristics of the topological information reflecting the topology of the navigation path. The computing time of the gradient method with topological information can therefore be significantly decreased without losing the global optimality. This reduced path update period allows the mobile robot to find a collision-free path even in the dynamic environment.

위상 정렬과 여유 시간 기반 주기 및 실시간 비주기 태스크 스케줄링 알고리즘 (Periodic and Real-Time Aperiodic Task Scheduling Algorithm based on Topological Sort and Residual Time)

  • 김시완;박홍성
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.302-307
    • /
    • 2012
  • Real-time systems perform periodic tasks and real-time aperiodic tasks such as alarm processing. Especially the periodic tasks included in control systems such as robots have precedence relationships among them. This paper proposes a new scheduling algorithm based on topological sort and residual time. The precedence relationships among periodic tasks are translated to the priorities of the tasks using topological sort algorithm. During the execution of the system the proposed scheduling algorithm decides on whether or not a newly arrived real-time aperiodic task is accepted based on residual time whenever the aperiodic task such as alarm is arrived. The proposed algorithm is validated using examples.

지역 및 전역 환경에 대한 세선화 기반 위상지도의 작성 (Thinning-Based Topological Map Building for Local and Global Environments)

  • 권태범;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.693-699
    • /
    • 2006
  • An accurate and compact map is essential to an autonomous mobile robot system. For navigation, it is efficient to use an occupancy grid map because the environment is represented by probability distribution. But it is difficult to apply it to the large environment since it needs a large amount of memory proportional to the environment size. As an alternative, a topological map can be used to represent it in terms of the discrete nodes with edges connecting them. It is usually constructed by the Voronoi-like graphs, but in this paper the topological map is incrementally built based on the local grid map using the thinning algorithm. This algorithm can extract only meaningful topological information by using the C-obstacle concept in real-time and is robust to the environment change, because its underlying local grid map is constructed based on the Bayesian update formula. In this paper, the position probability is defined to evaluate the quantitative reliability of the end nodes of this thinning-based topological map (TTM). The global TTM can be constructed by merging each local TTM by matching the reliable end nodes determined by the position probability. It is shown that the proposed TTM can represent the environment accurately in real-time and it is readily extended to the global TTM.

효율적인 몬테카를로 위치추정을 위한 샘플 수의 감소 (Reduction in Sample Size for Efficient Monte Carlo Localization)

  • 양주호;송재복
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.450-456
    • /
    • 2006
  • Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial pose estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated through the thinning technique, which is commonly used in image processing, is employed. The global topological map is first created from the given grid map for the environment. The robot then scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be similar to the one obtained off-line from the given grid map. Random samples are drawn near the topological edge instead of being taken with uniform distribution all over the environment, since the robot traverses along the edge. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased without adverse effects on the performance of MCL.