Kim, Soo-Hyun;Lim, Sung-Hyun;Cha, Hyung-Tai;Hahn, Hern-Soo
한국지능시스템학회논문지
/
제13권4호
/
pp.461-468
/
2003
In a sequence of images obtained by surveillance cameras, facial regions appear very small and their colors change abruptly by lighting condition. This paper proposes a new face detection scheme, robust on complex background, small size, and lighting conditions. The proposed method is consisted of three processes. In the first step, the candidates for the face regions are selected using face color distribution and motion information. In the second stage, the non-face regions are removed using face color ratio, boundary ratio, and average of column-wise intensity variation in the candidates. The face regions containing eyes and mouth are segmented and classified, and then they are scored using their topological relations in the last step. To speed up and improve a performance the above process, a block based image segmentation technique is used. The experiments have shown that the proposed algorithm detects faced regions with more than 91% of accuracy and less than 4.3% of false alarm rate.
The behavior of walking involves our action of seeing things. It is the intention of this research that the cognitive process of perceiving things along the path can affect the way we sense the length of the journey. The theory generally accepted in this line of thought is the 'feature accumulation theory'. It assumes that if the journey includes many objects or memorable features, then our memory recalls that journey much farther than it really was. This study set up a real-life experiment by asking university students about their mental memory of the two different routes in the campus. One is a longer path that has not much to look at except trees and the other a shorter path yet with many buildings, sign boards and street furnitures. The subjects processed their mental image in the brain based on their experience. They showed a strong tendency that the path with more features were remembered longer while that with less features shorter. More interestingly, it was found that as their experience increases, they become more accurate about the exact length of the questioned paths. The result corroborates the theory that human perception of space is based on the topological understanding of surroundings rather than geometric understanding.
영상 압축을 위한 기법인 벡터 양자 부호화는 입력 벡터와 가장 근사한 부호어를 찾기 위해 일반적으로 상당히 많은 계산량을 요구한다. 본 논문은 벡터 양자 부호화 과정을 고속 처리를 위한 새로운 탐색 기법을 제안한다. 먼저, 탐색 과정에서의 불필요한 정합 연산들을 대폭 줄이기 위해 부호책의 효과적인 기하학적 구조에 기반한 강력한 후보 제거 조간을 유도한다. 그런 다음, 그 후보 제거 조건을 이용한 고속 탐색 기법을 제안한다. 모의 실험 결과는 적은 전처리 연산과 메모리만을 사용하는 제안한 기법이 전역 탐색 기법과 동일한 부호화 성능을 유지하면서 부호화 시간을 대폭 줄일 수 있음을 보인다. 또한 기존 탐색 기법들과 비교할 때, 제안한 기법의 성능이 매우 우수함을 알 수 있다.
Kim, Jinpyung;Jang, Gyujin;Kim, Gyujin;Kim, Moon-Hyun
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.2948-2963
/
2015
In the field of computer vision, visual surveillance systems have recently become an important research topic. Growth in this area is being driven by both the increase in the availability of inexpensive computing devices and image sensors as well as the general inefficiency of manual surveillance and monitoring. In particular, the ultimate goal for many visual surveillance systems is to provide automatic activity recognition for events at a given site. A higher level of understanding of these activities requires certain lower-level computer vision tasks to be performed. So in this paper, we propose an intelligent activity recognition model that uses a structure learning method and a classification method. The structure learning method is provided as a K2-learning algorithm that generates Bayesian networks of causal relationships between sensors for a given activity. The statistical characteristics of the sensor values and the topological characteristics of the generated graphs are learned for each activity, and then a neural network is designed to classify the current activity according to the features extracted from the multiple sensor values that have been collected. Finally, the proposed method is implemented and tested by using PETS2013 benchmark data.
This study was done to detect the topographic and terrain change of the vicinity of the west coast. To make the basic map of the change in topology and terrain, the mosaic images were made using the images from the satellite, which were given the geometric correction based on the GCP (Ground Control Point) and DEM (Digital Elenation Model) data. The accuracy of the images was examined by .empaling them with CCP through 1:25,000's digital map. After that, among the resultant images of the 1970s and 2000s, those of Sihwa, Hwaong and Ansan, the lands reclaimed by drainage were compared to observe the change in the area. From this study, the accuracy of the images of the west coast from satellite could be acquired and the change of the topology and terrain was detected effectively. From the results, it was known that, in case of the land the topological change was not so big due to the development in the reclaimed land or the bare land. In Sihwa, the size of the land was increased 180 $\textrm{km}^2$ and that of the seashore was decreased 110 km. in Hwaong the size was increased 50 $\textrm{km}^2$ and in Ansan the city space was increased 71 $\textrm{km}^2$ due to the formation of the industrial complex.
본 논문에서는 CEGI (Complex Extended Gaussian Image)를 이용한 3D 메쉬 모델 워터마킹 알고리즘을 제안하였다. 제안한 알고리즘에서는 VRML 데이터의 3D 메쉬 모델을 6개 패치로 분할한 후, 각 패치의 CEGI 분포에서 복소 가중치의 크기가 큰 셀에 투영되는 메쉬의 법선 백터 방향에 워터마크를 삽입한다. 그리고 각 패치의 중점 좌표 및 CEGI 크기 분포의 우선 순위 정보를 이용하여 워터마크를 추출한다. 또한 아편 (affine) 변형된 모델에서는 패치의 초기 중점 좌표의 재배열 과정을 이용하여 원 모델의 방향으로 전환한 후, 워터마크를 추출한다. 본 논문에서 제안한 알고리즘의 성능을 평가하기 위한 실험에서 기하학적 및 위상학적 변형에 강인한 특성을 가짐을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권2호
/
pp.800-816
/
2018
In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.
3차원 모델의 형상 유사성 평가는 의학, 기계 공학, 분자 생물학 등의 많은 분야에서 매우 중요하다. 더욱이 3차원 모델이 웹 상에 보편화됨에 따라 3차원 모델들의 분류와 검색에 관한 연구들이 활발하게 이루어지고 있다. 본 논문에서는 3차원 형상 표현 방법들과 유사성 평가에 대한 주요 개념들을 기술하고, 최근의 형상 비교에 관한 연구들을 다해상도, 위상 기하학, 2차원 영상, 통계학 기반 방법들로 분류하여 그 특징들을 분석하였다. 또한 논문에서 채택한 유일성, 강인성, 불변성, 다해상도, 효율성, 비교범위와 같은 기준을 사용하여 그 성능을 비교 평가하였다. 다해상도 기반 방법은 비교를 위한 계산 시간은 감소시킨 반면 전처리 시간은 증가시켰다. 기하 및 위상 정보를 이용한 방법은 보다 다양한 형태의 모델들을 비교할 수 있었고 부분적인 형상 비교에도 강인하였다. 2차원 영상을 이용한 방법들은 시간 및 공간 복잡도가 높게 나타났다. 통계학 기반 방법들은 포즈 정규화 작업 없이 형상 비교가 가능하였고, 어파인 변환 및 잡음에도 강인한 결과를 보였다.
본 연구의 목적은 초등 세계지리 교육과정 구성의 전제 조건을 살피는 것이다. 초등 학생들은 주로 TV 프로그램을 통해 세계 각 나라에 대한 정보를 얻고 있다. 이로 인해 다른 나라에 대해 막연한 문화적 동경을 갖거나, 때로 의견이나 편견에 의해 다른 나라들을 이해하는 문제점이 있다. 따라서 다른 나라의 삶을 그들의 맥락에서 이해하는, 균형잡힌 인식의 틀을 육성시킬 필요성이 있다. 한편, 나라별 호오(好惡)에 대한 초등학생들의 판단 근거는 장소의 상징성과 생활과 관련된 일차적 조건, 즉 기후, 음식, 주거지 등이며, 우리나라와 세계 다른 나라와의 관계에 대한 판단은 정시적 요인이 주 근거로 작용하고 있다. 반면 자신들의 삶의 터전(지방)과 세계와의 관계에 대한 인지도는 상대적으로 낮게 나타났다. 이것은 동심원적 구성에 따른 교육과정상의 문제점이라 할 수 있다. 따라서 3, 4 학년 향토 학습에서부터 지방과 세계를 연계하는 교육과정이 구성되어야한다.
최근 지능형 CCTV는 빅 데이터, 인공지능 및 영상 분석과 같은 분야와 결합하여 다양한 이상 행위들을 탐지하고 보행자와 같은 객체의 전반적인 상황을 분석할 수 있으며, 이러한 지능형 영상 감시 기능에 대한 영상 분석 연구가 활발히 진행되고 있는 추세이다. 그러나 일반적으로 2차원 정보를 이용하는 CCTV 영상은 위상학적 정보 부족으로 인해 객체 오 인식과 같은 한계가 존재한다. 이러한 문제는 두 대의 카메라를 사용하여 생성된 객체의 깊이 정보를 영상에 추가함으로써 해결 할 수 있다. 본 논문에서는 가우시안 혼합기법을 사용하여 배경 모델링을 수행하고, 모델링 된 배경에서 전경을 분할하여 움직이는 객체의 존재 여부를 탐지한다. RGB 정보 기반 분할 결과를 이용하여 깊이 정보 기반 분할을 수행하기 위해 두 대의 카메라를 사용하여 스테레오 기반 깊이 지도를 생성한다. RGB 기반으로 분할된 영역을 깊이 정보를 추출하기 위한 도메인으로 설정하고, 도메인 내부에서 깊이 기반 분할을 수행한다. 강건하게 분할된 객체의 중심점을 탐지하고 방향을 추적하기 위해 가장 기본적인 객체 추적 방법인 CAMShift 기법을 적용하여 객체의 움직임을 추적한다. 실험을 통하여 제안된 RGB-D 모델을 이용한 객체 탐지 및 추적 방법의 우수성을 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.