• Title/Summary/Keyword: topological Structure

Search Result 292, Processing Time 0.025 seconds

Effects of Numerical Modeling on Concrete Heterogeneity (콘크리트 비균질성에 대한 수치모델의 영향)

  • Rhee, In-Kyu;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.189-198
    • /
    • 2006
  • The composition of most engineering materials is heterogeneous at some degree. It is simply a question of scale at which the level of heterogeneity becomes apparent. In the case of cementitious granular materials such as concrete the heterogeneity appears at the mesoscale where it is comprised of aggregate particles, a hardened cement paste and voids. Since it is difficult to consider each separate particle in the topological description explicitly, numerical models of the meso-structure are normally confined to two-phase matrix particle composites in which only the larger inclusions are accounted for. 2-D and 3-D concrete blocks(Representative Volume Element, RVE) are used to simulating heterogeneous concrete meso-structures in the form of aggregates in the hardened mortar with nearly zero-thickness linear or planar interfaces. The numerical sensitivity of these meso-structures are Investigated with respect to the different morphologies of heterogeneity and the different level of coupling constant among fracture mode I, II and III. In addition, a numerically homogenized concrete block in 3-D using Hashin-Shtrikman variational bounds provides an evidence of the effective cracking paths which are quite different with those of heterogenous concrete block. However, their average force-displacement relationship show a pretty close match each other.

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

Progressive Reconstruction of 3D Objects from a Single Freehand Line Drawing (Free-Hand 선화로부터 점진적 3차원 물체 복원)

  • 오범수;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.3_4
    • /
    • pp.168-185
    • /
    • 2003
  • This paper presents a progressive algorithm that not only can narrow down the search domain in the course of face identification but also can fast reconstruct various 3D objects from a sketch drawing. The sketch drawing, edge-vertex graph without hidden line removal, which serves as input for reconstruction process, is obtained from an inaccurate freehand sketch of a 3D wireframe object. The algorithm is executed in two stages. In the face identification stage, we generate and classify potential faces into implausible, basis, and minimal faces by using geometrical and topological constraints to reduce search space. The proposed algorithm searches the space of minimal faces only to identify actual faces of an object fast. In the object reconstruction stage, we progressively calculate a 3D structure by optimizing the coordinates of vertices of an object according to the sketch order of faces. The progressive method reconstructs the most plausible 3D object quickly by applying 3D constraints that are derived from the relationship between the object and the sketch drawing in the optimization process. Furthermore, it allows the designer to change viewpoint during sketching. The progressive reconstruction algorithm is discussed, and examples from a working implementation are given.

Analysis on Status and Trends of SIAM Journal Papers using Text Mining (텍스트마이닝 기법을 활용한 미국산업응용수학 학회지의 연구 현황 및 동향 분석)

  • Kim, Sung-Yeun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.212-222
    • /
    • 2020
  • The purpose of this study is to understand the current status and trends of the research studies published by the Society for Industrial and Applied Mathematics which is a leader in the field of industrial mathematics around the world. To perform this purpose, titles and abstracts were collected from 6,255 research articles between 2016 and 2019, and the R program was used to analyze the topic modeling model with LDA techniques and a regression model. As the results of analyses, first, a variety of studies have been studied in the fields of industrial mathematics, such as algebra, discrete mathematics, geometry, topological mathematics, probability and statistics. Second, it was found that the ascending research subjects were fluid mechanics, graph theory, and stochastic differential equations, and the descending research subjects were computational theory and classical geometry. The results of the study, based on the understanding of the overall flows and changes of the intellectual structure in the fields of industrial mathematics, are expected to provide researchers in the field with implications of the future direction of research and how to build an industrial mathematics curriculum that reflects the zeitgeist in the field of education.

Diameter, Fault Diameter and Average Distance between Two Nodes in Z-cube Network (Z-cube 네트워크의 직경, 고장직경과 정점간 평균거리)

  • Gwon, Gyeong-Hui;Lee, Gye-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.75-83
    • /
    • 1999
  • recently, a new hypercube-like interconnection network, the Z-cube, was proposed. The Z-cube retains most good topological properties, however, its node degree is 3/4 of hypercube's one. Considering hardware implementations, the Z-cube is a good alternative to the hypercube. In this paper, we obtained the diameter, fault diameter and the average distance between two nodes to evaluate the communication performance of the Z-cube. The recursive structure, the shortest path between two nodes I Z-cube and recurrence relation on the average distance were deduced, and node disjoint path was introduced. Although it is generally expected that the communication performance in an interconnection network with reduced node degree falls as much as that, this paper shows that the Z-cube's diameter is the same as the hypercube's one and the average distance between two nodes in Z-cube is about 1.125 times the average distance between two nodes in the hypercube and the fault diameter of Z-cube ranges approximately from 1.4times to 1.7times the fault diameter of the hypercube.

  • PDF

Developing a 3D Indoor Evacuation Simulator using a Spatial DBMS (공간 DBMS를 활용한 3차원 실내 대피 경로 안내 시스템)

  • Kim, Geun-Han;Kim, Hye-Young;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Currently used 3D models, which are mostly focused on visualization of 3D objects and lack topological structure, have limitation in being used for 3D spatial analyses and applications. However, implementing a full topology for the indoor spatial objects is less practical due to the increase of complexity and computation time. This study suggests an alternative method to build a 3D indoor model with less complexity using a spatial DBMS. Storing spatial and nonspatial information of indoor spaces in DB tables enables faster queries, computation and analyses. Also it is possible to display them in 2D or 3D using the queried information. This study suggests a 2D-3D hybrid data model, which combines the 2D topology constructed from CAD floor plans and stored in a spatial DBMS and the 3D visualization functionality. This study showed the process to build the proposed model in a spatial DBMS and use spatial functions and queries to visualize in 2D and 3D. And, then, as an example application, it illustrated the process to build an indoor evacuation simulator.

  • PDF

A Study on Redesign of Spatial Data Structure of Korean Reach File for Improving Adaptability (하천망분석도(KRF)의 활용성 증대를 위한 공간데이터 구조 개선에 관한 연구)

  • Song, Hyunoh;Lee, Hyuk;Kang, Taegu;Kim, Kyunghyun;Lee, Jaekwan;Rhew, Doughee;Jung, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.511-519
    • /
    • 2016
  • National Institute of Environmental Research (NIER) has developed the Korean Reach File (KRF) for scientific and systematic analysis of variables related to water quality, pollutant sources and aquatic ecosystems in consideration of steam reach networks. The KRF provides a new framework for data production, storage, management and analysis for water related variables in relation to spatial characteristics, connections, and topologies of stream reaches. However, the current version of KRF (ver.2) has limited applicability because its nodes include not only the stream points based on topological characteristics but also those based on water quality monitoring stations, which may undermine its generality. In this study, a new version of KRF (ver.3) was designed and established to overcome the weak point of version 2. The version 3 is a generalization of the old KRF graphic data and it integrates the attribute data while separating it from the graphic data to minimize additional work that is needed for data association and search. We tested the KRF (ver.3) on actual cases and convenience and adaptability for each application was verified. Further research should focus on developing a database link model and real-world applications that are targeted to process event data.

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF

Isolation of MLL1 Inhibitory RNA Aptamers

  • Ul-Haq, Asad;Jin, Ming Li;Jeong, Kwang Won;Kim, Hwan-Mook;Chun, Kwang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.201-209
    • /
    • 2019
  • Mixed lineage leukemia proteins (MLL) are the key histone lysine methyltransferases that regulate expression of diverse genes. Aberrant activation of MLL promotes leukemia as well as solid tumors in humans, highlighting the urgent need for the development of an MLL inhibitor. We screened and isolated MLL1-binding ssRNAs using SELEX (${\underline{S}}ystemic$ ${\underline{E}}volution$ of ${\underline{L}}igands$ by ${\underline{E}}xponential$ enrichment) technology. When sequences in sub-libraries were obtained using next-generation sequencing (NGS), the most enriched aptamers-APT1 and APT2-represented about 30% and 26% of sub-library populations, respectively. Motif analysis of the top 50 sequences provided a highly conserved sequence: 5'-A[A/C][C/G][G/U][U/A]ACAGAGGG[U/A]GG[A/C] GAGUGGGU-3'. APT1, APT2, and APT5 embracing this motif generated secondary structures with similar topological characteristics. We found that APT1 and APT2 have a good binding activity and the analysis using mutated aptamer variants showed that the site information in the central region was critical for binding. In vitro enzyme activity assay showed that APT1 and APT2 had MLL1 inhibitory activity. Three-dimensional structure prediction of APT1-MLL1 complex indicates multiple weak interactions formed between MLL1 SET domain and APT1. Our study confirmed that NGS-assisted SELEX is an efficient tool for aptamer screening and that aptamers could be useful in diagnosis and treatment of MLL1-mediated diseases.

Similarity of Zooplankton Community Structure among Reservoirs in Yeongsan-Seomjin River Basin (영산강, 섬진강 수계 내 주요 저수지에 대한 동물플랑크톤 군집 구조의 유사성 분석)

  • Ko, Eui-Jeong;Kim, Gu-Yeon;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.285-292
    • /
    • 2019
  • Our study was based on the long-term surveys with respect to the major reservoirs located in the Yeongsan and Seomjin river basins. A total of 45 survey sites have been surveyed four times a year from 2008 to 2017. We identified 166 zooplankton species, including 127 rotifers, 26 cladocerans, and 13 copepods. Mean population density and species number of small reservoirs were higher than those of mid and large reservoirs. Considering outliers exceeding the 90th percentile between species occupancy and mean abundance, 10 of 11 habitat generalists were rotifers, and Bosmina longirostris was the only cladoceran. Habitat specialist consisted of three species of rotifers and emerged from one to three survey sites. According to the modularity results, it was found that the survey sites covering the entire river basins were characterized into five groups, which was similar to the classification by maximum water surface areas(MWSA). The result of the eigenvector centrality showed that the size of MWSA had a greater impact on the similarity of zooplankton community structure between reservoirs than the difference in distance between reservoirs. In the case of survey points in near dam or estuary bank of Juam and Youngsan reservoirs, modularity class were separated from other internal survey points of those. Given that the zooplankton interactions may contribute to freshwater functions more than species diversity. These topological features provide new insight into studying zooplankton distribution patterns, their organization and impacts on freshwater-associated function.