• Title/Summary/Keyword: topoisomerase

Search Result 181, Processing Time 0.025 seconds

Binding Mode and Inhibitory Activity of Constituents Isolated from Sclerotium of Poria cocos with DNA Topoisomerase I (Poria cocos 균핵에서 분리한 성분들과 DNA Topoisomerase I의 반응양상 및 효소저해 활성)

  • Choi, Inhee;Kim, Ji-Hyun;Kim, Choonmi
    • YAKHAK HOEJI
    • /
    • v.49 no.5
    • /
    • pp.428-436
    • /
    • 2005
  • DNA topoisomerase I(TOP1) helps the control of DNA replication, transcription and recombination by assist­ing breaking and rejoining of DNA double strand. Camptothecin (CPT) and its derivative, topotecan, are known to inhibit TOP1 by intercalating into TOP1-DNA complex. Recently various non-CPT intercalators are synthesized for a new class of TOP1 inhibitors. In this study, six compounds isolated from Poria cocos were investigated for their interaction with TOP1­DNA complex using the flexible docking program, FlexiDock. The binding modes were analyzed and compared with the TOP1 inhibition activities. The compounds that showed potent activity were intercalated between the + 1/-1 base pairs of DNA, located near the active site phosphotyrosine723 and formed hydrogen bonds with active site residues. On the other hand, compounds with no activity were not docked at all. The binding modes were well correlated with the inhibition activity, suggesting the possibility that potent inhibitors can be designed from the information presented by the docking study.

DNA Toposiomerase I Inhibitor by Streptomyces sp. 7489 (방선균주 7489가 생산하는 DNA Topoisomerase I 저해제에 관한 연구)

  • Lee, Dong-Sun;Ha, Sang-Chul;Lee, Sang-Yong;Kim, Jong-Guk;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.101-104
    • /
    • 1996
  • During the screening of inhibitor of DNA topoisomerase I from microbial secondary metabolites, Streptomyces melanosporofaciens 7489 which was capable of producing high level of inhibitor was selected from soil. The active compound (7489-1) was purified from the culture broth by solvent extraction, silica gel column chromatography and HPLC. The inhibitor was identified as dibutyl phthalate by spectroscopic methods of UV, $^{1}H$-NMR, $^{13}C$-NMR, DEPT and EI-MS. 7489-1 showed a strong inhibitory activity against topoisomerase I with 10 ${\mu}$M of $IC_{50}$ value.

  • PDF

Effects of camptothecin on the expression of DNA topoisomerase I and c-myc in HL-60 human leukemia cells (HL-60 사람 백혈병 세포에서 camptothecin이 DNA topoisomerase l과 c-myc의 발현에 미치는 영향)

  • 정인철;정대성;류경자;박장수;조무연
    • Journal of Life Science
    • /
    • v.10 no.6
    • /
    • pp.621-629
    • /
    • 2000
  • Camptothecin (CPT) is an antitumor alkaloid that has been isolated from the Chinese tree, Camptotheca acuminata. The cytotoxicity of CPT has been correlated to its inhibition of DNA topoisomerase (Topo) I by stabilizing drug-enzyme-DNA “cleavable complex" resulting in DNA single-strand breaks and DNA-protein crosslinks. This studies were designed to elucidate whether CPT regulates Topo I mediated by CPT in DNAs containing c-myc protooncogene. We have conducted experiments on Topo I purification, pUC-MYC I cloning and Topo I assay using electrophoresis, quantitative RT-PCR and Northern blotting techniques. CPT ingibited the relaxation activity of Topo I in pUC19 DNA at various concentrations (1-1000 $\mu$M), while it enhanced the cleavage of Topo I in the pUC-MYC I by forming a cleavable complex at relatively high concentrations (100-1000 $\mu$M). In HL-60 cells treated with CPT, the expression of c-myc gene was decreased over that in the control group with no changes in the expression of Topo I mRNA. Our results suggest that Topo I is the target of CPT cytotoxicity but it does not affect Topo I extression, and the suppression of c-myc mRNA expression by CPT is due to c-myc damage resulted from formation of a cleavable complex with CPT. CPT.

  • PDF

Increased Resistance to Quinolones in Streptococcus parauberis and Development of a Rapid Assay for Detecting Mutations in Topoisomerase Genes (Streptococcus parauberis의 퀴놀론 내성 증가와 Topoisomerase 유전자에서의 돌연변이 신속 분석)

  • Kim, So Yeon;Kim, Young Chul;Jeong, Seo Kyung;Jun, Lyu Jin;Jin, Ji Woong;Jeong, Hyun Do
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • To investigate the acquisition of quinolone resistance, we examined mutations in the quinolone resistance-determining region (QRDR) of type II topoisomerase genes in ciprofloxacin (CIP)-resistant clinical isolates and in vitro mutants of Streptococcus parauberis. The CIP-resistant clinical isolates had one base change responsible for a Ser-79${\rightarrow}$Thr in the QRDR of parC. However, the CIP-resistant in vitro mutants had an altered QRDR of parC (Ser-79${\rightarrow}$Ile) that differed from that of the isolates. None of the CIP-resistant S. parauberis clinical isolates or in vitro mutants exhibited amino acid changes in gyrA or gyrB. However, even though involvement in the increased resistance was not clear, an Arg-449${\rightarrow}$Ser mutation outside of the QRDR of parE was detected in CIP-resistant mutant 2P1. These results suggest that the topoisomerase IV gene, parC (and possibly parE, as well), is the primary ciprofloxacin target in S. parauberis. Additionally we established a high-resolution melting (HRM) assay capable of detecting the dominant mutation in four type II topoisomerase genes conferring ciprofloxacin resistance. These rapid and reliable assays may provide a convenient method of surveillance for genetic mutations conferring antibiotic resistance.

Effect of TNF-$\alpha$ Gene Transfer to Respiratory Cancer Cell Lines on Sensitivity to Anticancer drugs (호흡기계암세포주에서 TNF-$\alpha$ 유전자의 이입이 항암제 감수성에 미치는 효과)

  • Mo, Eun-Kyung;Lee, Jae-Ho;Lee, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Choi, Hyung-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.302-313
    • /
    • 1995
  • Background: Tumor necrosis factor(TNF) showed antitumor cytolytic effects on sensitive tumor cells in numerous in vivo and in vitro studies. But it could not be administered systemically to human because of severe systemic adverse effects at effective concentrations against tumor cells. Many studies showed that a high concentrations of TNF in the local milieu may evoke in vivo TNF-responsive mechanisms sufficient to suppress tumor growth. Recently developed technique of TNF gene transfer to tumor cells using retrovirus vector could be a good candidate for local TNF administration. TNF is also known to synergistically enhance in vitro cytotoxicity of chemotherapeutic drugs targeted to DNA topoisomerase II against TNF-sensitive tumor cell lines. In this study the in vitro chemosensitivity against DNA topoisomerase II targeted chemotherapeutic drugs was evaluated using some respiratory cancer cell lines to which TNF gene had been transferred. Method: NCI-H2058, a human mesothelioma cell line, A549, a human lung adenocarcinoma cell line and WEHI 164 cell line, a murine fibrosarcoma cell line were treated with etoposide and doxorubicin, which are typical topoisomerase II - targeted chemotherapeutic agents, at different concentration. The resultant cytotoxicity was measured by MIT assay. Then the cytotoxicity of the same chemotherapeutic agents was measured after TNF-$\alpha$ gene-transfer and the two results were compared. Results: The cytotoxicity was not increased significantly in WEHI164 cell line and A549 cell line but statistically significant increase was observed in H2058 cell line when TNF-$\alpha$ gene was transferred(p<0.05). Conclusion: These findings show that TNF-$\alpha$ gene transfer to respiratory cancer cell lines results in variable effects on chemosensitivity against topoisomerase II inhibitor among different cell lines in vitro and can be additively cytotoxic in certain selective tumor cell lines.

  • PDF

Topoisomerase I Inhibitors from the Streptomyces sp. Strain KM86-9B Isolated from a Marine Sponge

  • Lee, Hong-Kum;Lee, Deuk-Soo;Lim, Jung-Hyun;Kim, Jung-Sun;Im, Kwang-Sik;Jung, Jee H.
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.729-733
    • /
    • 1998
  • The crude extract of Streptomyces sp. strain KM86-9B, isolated from a marine sponge, displayed significant inhibition on topoisomerase I activity. Investigation of the ca usative components by bioactivity-directed fractionation resulted in the isolation of a series of iso- and anteiso-fatty acids.

  • PDF

Epidermal Growth Factor Decreases the Level of DNA Topoisomerase $II{\alpha}$ in Human Carcinoma A431 Cells

  • Chang, Jong-Soo
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.245-248
    • /
    • 1998
  • Human epidermoid carcinoma A431 cells have an extraordinarily large number of epidermal growth factor (EGF) receptors, and their growth is inhibited by EGF, which results in growth arrest at the Gl phase. In order to investigate the EGF-mediated inhibition mechanism, the expression level of DNA topoisomerase (topo) II was analyzed after EGF treatment. As a result, it was shown that EGF treatment lowered the amount of 170 kDa topo II (topo $II{\alpha}$) but not 180 kDa (topo $II{\beta}$). However, the A431 cell variant resistant to EGF was not sensitive to EGF treatment. These results suggest that EGF-induced growth arrest of A431 cells may be closely related to the depletion of topo $II{\alpha}$.

  • PDF

M Phase-Specific Phosphorylation of DNA Topoisomerase IIα in HeLa Cells

  • Bae, Young-Seuk;Lee, Sook-Ja;Kwak, Sang-Soo
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.27-31
    • /
    • 1996
  • Using topoisomerase II (topo II) isozyme-specific antibodies, we investigated the phosphorylation of topo $II{\alpha}$ in mitotic HeLa cells. Topo $II{\alpha}$ was specifically modified in the mitotic cells, resulting in slow migration on SDS-polyacrylamide gel electrophoresis. To characterize the nature of this modification, we treated the nuclear extracts prepared from the mitotic cells with alkaline phosphatase. After the treatment with alkaline phosphatase, the slowly migrated band disappeared and instead a normal (170 kDa) topo $II{\alpha}$ band appeared. These results indicate that human topo $II{\alpha}$ is modified at a specific site(s) in M phase by phosphorylation, supporting the possibility that M phase-specific phosphorylation of topo II is critical for mitotic chromosome condensation and segregation.

  • PDF

Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

  • Jun, Kyu-Yeon;Kwon, Youngjoo
    • Biomolecules & Therapeutics
    • /
    • v.24 no.5
    • /
    • pp.453-468
    • /
    • 2016
  • There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.

Radiosensitizing and Topoisomerase I Inhibitory Effects of Aloe vera, Formitella fraxinea, and Ulmus davidiana Extracts

  • Lee, Keyong-Ho;Lee, Jae-Hyun;Cho, Choa-Hyoung;Noh, Moon-Jong;Kim, Young-Bum
    • Natural Product Sciences
    • /
    • v.7 no.2
    • /
    • pp.60-62
    • /
    • 2001
  • Ulmus davidiana, Formitella fraxinea, and Aloe vera extracts were detected to have inhibitory effects against topoisomerase I at treatment of $5{\mu}g$. Ulmus davidiana and Aloe vera extracts were found to show inhibitory effect similar to camptothecin, Formitella fraxinea extract was found to have weak activity. We also found the potential use of those extracts as a radiation sensitizer. Radiosensitizing effect at combination treatment was increased more than 2 times at single treatment of radiation, Ulmus davidiana or Formitella fraxinea extracts. Ulmus davidiana and Formitella fraxinea extracts were found to have significant radiosensitizing effect on test tumor cell line. But, Aloe vera extract was not detected to have activity as a radiosensitizer. Ulmus davidiana and Formitella fraxinea extracts are potent radiosensitizers on tumor cell lines and should be considered for further study of active compounds.

  • PDF