• Title/Summary/Keyword: topical plant diseases

Search Result 2, Processing Time 0.017 seconds

Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases

  • Abdullahi, Adamu;Ahmad, Khairulmazmi;Ismail, Intan Safinar;Asib, Norhayu;Haruna, Osumanu;Abubakar, Abubakar Ismaila;Siddiqui, Yasmeen;Ismail, Mohd Razi
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.515-535
    • /
    • 2020
  • Essential oils (EOs) have gained a renewed interest in many disciplines such as plant disease control and medicine. This review discusses the components of ginger EOs, their mode of action, and their potential nanotechnology applications in controlling tropical plant diseases. Gas chromatography-mass spectroscopy (GC-MS), high-performance liquid chromatography, and headspace procedures are commonly used to detect and profile their chemical compositions EOs in ginger. The ginger EOs are composed of monoterpenes (transcaryophyllene, camphene, geranial, eucalyptol, and neral) and sesquiterpene hydrocarbons (α-zingiberene, ar-curcumene, β-bisabolene, and β-sesquiphellandrene). GC-MS analysis of the EOs revealed many compounds but few compounds were revealed using the headspace approach. The EOs have a wide range of activities against many phytopathogens. EOs mode of action affects both the pathogen cell's external envelope and internal structures. The problems associated with solubility and stability of EOs had prompted the use nanotechnology such as nanoemulsions. The use of nanoemulsion to increase efficiency and supply of EOs to control plant diseases control was discussed in this present paper. The findings of this review paper may accelerate the effective use of ginger EOs in controlling tropical plant diseases.

Inhibitory Effects of Collagen Coated Coffee Bean Intake on Skin Aging

  • Lee, In-Ah;Ha, Mi-Ae;Shin, Yong-Wook
    • Journal of People, Plants, and Environment
    • /
    • v.22 no.1
    • /
    • pp.39-52
    • /
    • 2019
  • To evaluate the protective effect of collagen peptide-coated coffee extract on skin aging, cell viability was measured with a MTT assay using cultured CCD-986sk fibroblasts, and its effect on wrinkles in the skin of hairless mice induced by UVB-irradiation was examined. In addition, its effect on procollagen synthesis and anti-oxidative, and its inhibitory activity against collagenase, elastase, tyrosinase and MMP-1 were analysed. After the 30-minute topical treatment, the animals were exposed to UVB irradiation (60-100 mJ/cm2) for 4 weeks and its intensity increased during the period. Under the experimental conditions set in this study, the skin thickness of hairless mice significantly decreased (11.8-21.3%) compared to the control group. Based on these results, the prolonged oral intake of a collagen peptide mixture with coffee is expected to significantly increase the synthesis of procollagen in dermal fibroblasts, thereby contributing to the alleviation of wrinkling and lowered elasticity due to structural damage to the dermal layer caused by UV. The oral intake of collagen-coated coffee contributes to increasing collagen biosynthesis in a dose-dependent manner and alleviates the symptoms of thickened keratin caused by UV irradiation. However, it did not inhibit the enzymes involved in skin aging, whitening, wrinkle improvement, and antioxidation. Based on the these results, it can be concluded that the intake of collagen peptide-coated coffee extract can be utilized as an alternative material for the prevention or treatment of diseases associated with photoaging.