• 제목/요약/키워드: topic modeling analysis

검색결과 694건 처리시간 0.025초

트윗 텍스트 마이닝 기법을 이용한 구제역의 감성분석 (Sentiment Analysis of Foot-and-Mouth Disease Using Tweet Text-Mining Technique)

  • 채희찬;이종욱;최윤아;박대희;정용화
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권11호
    • /
    • pp.419-426
    • /
    • 2018
  • 구제역으로 인하여 국내 축산업계 및 관련 산업분야는 매년 막대한 피해를 입고 있다. 구제역과 관련한 다양한 학술적 연구들이 현재 진행되고는 있으나, 구제역의 발병에 따른 사회적 파급효과에 관한 공학적 분석 연구는 매우 제한적이다. 본 연구에서는 구제역에 관한 일반 시민들의 감성적 반응을 텍스트 마이닝 방법론을 사용하여 분석하는 체계적인 방법론을 제안한다. 제안하는 시스템은 먼저, 트위터에 게시된 트윗 중 구제역과 관련된 데이터를 수집한 후, 딥러닝 기법을 사용하여 극성 분류 과정을 거친다. 둘째, 토픽 모델링의 대표적인 기법 중 하나인 LDA를 활용하여 트윗으로 부터 키워드들을 추출하고, 추출된 키워드들로부터 극성별 동시출현 키워드 네트워크를 구성한다. 셋째, 키워드 네트워크을 통해 구제역의 위기단계 구간별 사회적 파급효과를 분석한다. 사례 분석으로써, 2010년 7월부터 2011년 12월까지 국내에서 발생한 구제역에 관한 일반 시민들의 감성적 변화를 분석하였다.

회귀분석과 텍스트마이닝을 활용한 미세먼지 비상저감조치의 실효성 및 국민청원 분석 (An Analysis of Effects of Emergency Fine Dust Reduction Measures and National Petition Using Regression Analysis and Text Mining)

  • 김애니;정소희;최현빈;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권11호
    • /
    • pp.427-434
    • /
    • 2018
  • 최근 서울시에서는 '미세먼지 비상저감조치'로 '대중교통 무료' 정책과 '시민 참여형 차량 2부제'를 시행하였다. 본 논문에서는 두 교통정책에 대한 실효성을 파악한 뒤, 향후 미세먼지 정책의 방향을 제시하였다. 교통이 미세먼지에 미치는 영향은 회귀분석으로, 두 정책에 대한 시민들의 반응과 향후 정책에 대한 시민들의 의견은 텍스트마이닝 기법을 통해 알아보았다. 분석 결과, 정책에 대한 시민들의 의견은 대부분 부정적이었고 국외 요인이 미세먼지의 주된 원인이라는 시민들의 생각과 달리 국내 요인의 영향도 상당하였다. 또 국민청원을 통해 시민들이 원하는 구체적인 정책의 내용을 알 수 있었다. 위 결과를 토대로 향후 미세먼지 정책이 나아갈 방향을 제시하였다.

토픽모델링을 활용한 교통경찰 민원 분석 (An Analysis of Civil Complaints about Traffic Policing Using the LDA Model)

  • 이상엽
    • 한국ITS학회 논문지
    • /
    • 제20권4호
    • /
    • pp.57-70
    • /
    • 2021
  • 본 연구는 민원데이터를 분석함으로써 교통경찰에 대한 국민의 치안 수요를 탐색하고자 하였다. 이를 위해 교통경찰 관련 국민신문고 민원데이터 2,062건을 대상으로, 토픽모델링 방법 중 하나인 잠재 디리클레 할당(Latent Dirichlet Allocation)을 통해 주요 토픽을 추출하고 높은 비중을 차지한 위반신고에 대해 추가분석을 시도하였다. 이 과정에서 키워드와 대표문서의 일관성과 합치성을 함께 고려하였다. 분석 결과 교통경찰 관련 민원은 시설개선, 신호에 따른 교차로통행방법, 번호판 영치, 개인형 이동장치 등 41개의 토픽으로 분류할 수 있었다. 교차로내 위반과 이륜자동차의 위반에 대한 단속을 강화하고 무인교통단속장비, 횡단보도, 신호등의 설치 및 운영에 대한 선제적인 조치, 최근 개정된 법령과 시행된 정책, 경찰교통민원 사이트, 단속 사후 절차에 대한 더욱 활발한 홍보가 필요한 것으로 판단된다.

커넥티드카 인포테인먼트 애플리케이션의 사용자 경험 요인 : 안드로이드 오토 리뷰의 텍스트마이닝 분석을 중심으로 (User Experience Factors in Connected Car Infotainment Applications : Focusing on Text Mining Analysis in the Android Auto Reviews)

  • 김정용;배수은;최준호
    • 한국ITS학회 논문지
    • /
    • 제22권4호
    • /
    • pp.211-225
    • /
    • 2023
  • 미래 모빌리티 환경에서 인포테인먼트 시스템은 사용자와 차량을 연결하는 중추적 역할을 수행할 것으로 예상된다. 이 연구는 커넥티드카 인포테인먼트 애플리케이션인 안드로이드 오토의 사용자 리뷰에서 사용자 경험 요인을 도출하고, 만족도에 영향을 미치는 요인을 분석하여 인포테인먼트 시스템의 만족도 개선 방안을 제안하였다. 이를 위해 인포테인먼트 시스템 사용자 경험 요인을 구성하고, 토픽 모델링을 통해 실제 사용자 리뷰에서 도출한 토픽을 적용하였다. 감성분석과 로지스틱 회귀분석 결과, 만족도에 긍정적 영향을 미치는 요인으로 사용 용이성과 이해 용이성이, 불만족 요인으로 유연성과 안전성, 유희성이 도출되었으며, 이를 기반으로 설계 개선 전략을 제안하였다.

빅데이터를 활용한 젠트리피케이션 상권의 장소성 분류와 특성 분석 -서울시 14개 주요상권을 중심으로- (Classifying and Characterizing the Types of Gentrified Commercial Districts Based on Sense of Place Using Big Data: Focusing on 14 Districts in Seoul)

  • 김영재;박인권
    • 지역연구
    • /
    • 제39권1호
    • /
    • pp.3-20
    • /
    • 2023
  • 본 연구는 젠트리피케이션이 발생한 상권의 장소성을 파악하여 상권의 확장과 쇠퇴 속에서 장소성의 구체적인 모습을 유형화하고 유형별 특징을 분석하는 것을 목적으로 한다. 소셜 미디어를 통해 수집된 대용량 문서를 활용하여 위계적 군집분석을 시행하였으며, 지역별 장소성을 인지적 차원의 <경험>과 실재적 차원의 <상권특성>으로 구분하여 상권 군집별 특성을 확인하였다. 이를 위해 잠재 디리클레 할당(Latent Dirichlet Allocation: LDA) 토픽모델링 기법과 서울시 우리마을가게 상권분석서비스를 통해 수집된 상권별 매출액 통계자료를 활용하였다. 분석 결과 서울시 젠트리피케이션 상권은 고유한 특성을 가진 '연극 상권', '전통문화 상권', '여성 미용 상권', '고급음식점 및 의료서비스 상권', '트렌디 상권'으로 분류되는 것으로 나타났다. 연구의 결과를 바탕으로 보다 효율적이고 지역별 특색에 맞는 상업정책들을 시행할 수 있을 것으로 기대한다.

텍스트 마이닝을 활용한 공공기관 서비스 로봇에 대한 사용자 리뷰 분석 : 안내로봇 사례를 중심으로 (Text Mining Analysis of Customer Reviews on Public Service Robots: With a focus on the Guide Robot Cases)

  • 신효림;최준호;오창훈
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.787-797
    • /
    • 2023
  • 공공기관에서 서비스 로봇, 특히 안내로봇의 사용이 보편화 되며 다양한 곳에서 사람들을 만나고 있다. 그러나 4년이 넘는 시간 동안 사용자가 안내로봇을 만나왔지만, 아직까지 사용자와 안내로봇의 상호작용에 대한 탐구가 부족한 실정이다. 이에 이 연구는 안내로봇에 대한 사용자 경험을 탐구하고자, 가장 오랜 기간 동안 사용자를 만난 안내로봇인 '큐아이'를 연구 대상으로 선정하여 서비스를 시작한 시점부터 작성된 모든 리뷰를 수집하였다, TF-IDF로 주요 키워드를 확인하고 토픽 모델링을 통해 사용자 경험 요인을 도출하였으며 감성 분석을 통해 사용자 경험 저해 요인을 살펴보았다. 분석 결과, 안내로봇의 기능, 외형, 상호작용 방식, 그리고 안내로봇의 문화해설사 역할과 도우미 역할이 핵심 사용자 경험 요인으로 나타났다. 부정적 리뷰를 통해 확인한 저해 요인은 이를 개선할 수 있도록 인터랙션 설계와 멀티모달 인터페이스를 활용한 서비스 디자인, 문화해설사로서의 콘텐츠 개발 등 향후 방향성을 제안하였다. 이 연구는 안내로봇의 사용자 경험을 분석하고 개선방안을 제시한 것에 의의가 있다.

저궤도 위성통신 분야의 ICT 디지털 전환과 데이터 융합 생태계 조성을 위한 SNS 감성분석과 니드마이닝 (SNS Sentiment Analysis and Needmining for ICT Digital Transformation and Data Convergence Ecosystem Establishment in LEO Satellite Communications)

  • 이병희;김태현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권12호
    • /
    • pp.347-356
    • /
    • 2023
  • 최근 우크라이나-러시아간 전쟁에서 저궤도 위성통신이 큰 진가를 발휘하였고, 우리나라도 2023년 5월 성공적인 누리호 발사로 저궤도 위성통신 서비스의 발판을 마련하고 본격적인 민간 우주시대 경쟁에 돌입하였다. 본 논문은 저궤도 위성통신 분야의 ICT 디지털 전환과 데이터 융합 생태계 조성을 위해 세계적인 SNS의 하나인 레딧에서 글을 가져와서 이용자의 감성분석을 수행하고, 이용자의 니즈를 파악하고자 니드마이닝을 통해 니즈 관련 문장을 추출하여 토픽모델링을 수행하여 토픽을 분류하고 이들 토픽에 따라 실행계획을 마련하고자 한다. 본 연구가 저궤도 위성통신 분야에서 새로운 비즈니스 모델의 개발과 혁신, 디지털 정보격차 해소 및 사회적 문제 해결, 지속 가능한 디지털 전환 및 소프트 파워 향상에 기여하는데 정책적 자료로 활용되기를 기대한다.

텍스트마이닝을 통한 공간 컴퓨팅 인식 분석 및 전략 방향에 관한 연구: 애플 비전 프로 사례를 중심으로 (A Study on Perception Analysis and Strategic Direction of Spatial Computing through Text Mining: Focusing on the Case of Apple Vision Pro)

  • 양희태
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.205-221
    • /
    • 2024
  • 2023년 6월 공간 컴퓨팅이라는 용어가 애플 비전 프로 공개로 인해 대중들에게 본격적으로 인식되기 시작하였고, 2024년 2월 공식 출시를 기점으로 관심이 폭발적으로 증가하고 있다. 이제 막 시장이 개화된 상황에서 공간 컴퓨팅의 지속가능한 성장을 위해 대중들의 인식을 분석하고 근거 기반으로 산업계와 정부를 위한 적절한 대응 방향을 제시할 필요가 있다. 이에, 본 연구는 다양한 텍스트마이닝 기법을 이용하여 국내 대중들의 공간 컴퓨팅에 대한 인식을 탐색하였고, 분석 결과를 바탕으로 성공적인 시장 안착을 위한 전략 방향을 모색하였다. 결과적으로 공간 컴퓨팅에 대한 선도적 연구 수행과 새로운 연구방법론 제시, 이해관계자들이 활용할 수 있는 전략 및 정부 정책 방향을 제시했다는 점에서 본 연구의 의의가 있다.

기술 성숙도 및 의존도의 네트워크 분석을 통한 유망 융합 기술 발굴 방법론 (Discovering Promising Convergence Technologies Using Network Analysis of Maturity and Dependency of Technology)

  • 최호창;곽기영;김남규
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.101-124
    • /
    • 2018
  • 최근 다양한 분야에서 새로운 기술이 출현하고 있으며, 이들 대부분은 기존 기술들의 융합(Convergence)을 통해 형성되고 있다. 또한 가까운 미래에 출현하게 될 유망한 융합 기술을 예측함으로써 변화하는 기술 지형에 선제적으로 대응하기 위한 수요가 꾸준히 증가하고 있으며, 이러한 수요에 부응하여 많은 기관과 연구자들은 미래 유망 융합 기술 예측을 위한 분석을 수행하고 있다. 하지만 이와 관련한 기존의 많은 연구들은 (i) 고정된 기술 분류 기준을 분석에 사용함으로써 기술 분야의 동적 변화를 반영하지 못했다는 점, (ii) 예측 모형 수립 과정에서 주로 범용성 네트워크 지표를 사용함으로써 기술의 융합이라는 목적에 부합하는 고유 특성을 활용하지 못했다는 점, 그리고 (iii) 유망 분야 예측 모형의 정확성 평가를 위한 객관적 방법을 제시하지 못했다는 점 등에서 한계를 갖고 있다. 이에 본 연구에서는 (i) 토픽 모델링을 통해 기존의 고정된 분류 기준이 아닌 실제 기술시장의 동적 변화에 따른 새로운 기술군을 도출하고, (ii) 기술 성숙도 및 기술군 간 의존 관계에 따라 각 기술군의 융합적 특성을 반영하는 잠재 성장 중심성(Potential Growth Centrality) 지표를 산출하였으며, (iii) 잠재 성장 중심성에 근거하여 예측한 유망 기술의 성숙도 증가량을 시기별로 측정하여 예측 모형의 정확도를 평가하는 방안을 제시한다. 이와 더불어 제안 방법론의 성능 및 실무 적용 가능성의 평가를 위해 특허 문서 13, 477건에 대한 실험을 수행하였으며, 실험 결과 제안한 잠재 성장 중심성에 따른 예측 모형이 단순히 현재 활용되는 영향도 기반의 예측 모형에 비해 최대 약 2.88배 높은 예측 정확도를 보임을 확인하였다.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.