• Title/Summary/Keyword: topic detection

Search Result 180, Processing Time 0.033 seconds

Statistical Properties of News Coverage Data

  • Lim, Eunju;Hahn, Kyu S.;Lim, Johan;Kim, Myungsuk;Park, Jeongyeon;Yoon, Jihee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.771-780
    • /
    • 2012
  • In the current analysis, we examine news coverage data widely used in media studies. News coverage data is usually time series data to capture the volume or the tone of the news media's coverage of a topic. We first describe the distributional properties of autoregressive conditionally heteroscadestic(ARCH) effects and compare two major American newspaper's coverage of U.S.-North Korea relations. Subsequently, we propose a change point detection model and apply it to the detection of major change points in the tone of American newspaper coverage of U.S.-North Korea relations.

Event recognition of entering and exiting (출입 이벤트 인식)

  • Cui, Yaohuan;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.199-204
    • /
    • 2008
  • Visual surveillance is an active topic recently in Computer Vision. Event detection and recognition is one important and useful application of visual surveillance system. In this paper, we propose a new method to recognize the entering and exiting events based on the human's movement feature and the door's state. Without sensors, the proposed approach is based on novel and simple vision method as a combination of edge detection, motion history image and geometrical characteristic of the human shape. The proposed method includes several applications such as access control in visual surveillance and computer vision fields.

  • PDF

Walking Features Detection for Human Recognition

  • Viet, Nguyen Anh;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.787-795
    • /
    • 2008
  • Human recognition on camera is an interesting topic in computer vision. While fingerprint and face recognition have been become common, gait is considered as a new biometric feature for distance recognition. In this paper, we propose a gait recognition algorithm based on the knee angle, 2 feet distance, walking velocity and head direction of a person who appear in camera view on one gait cycle. The background subtraction method firstly use for binary moving object extraction and then base on it we continue detect the leg region, head region and get gait features (leg angle, leg swing amplitude). Another feature, walking speed, also can be detected after a gait cycle finished. And then, we compute the errors between calculated features and stored features for recognition. This method gives good results when we performed testing using indoor and outdoor landscape in both lateral, oblique view.

  • PDF

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

Academic Registration Text Classification Using Machine Learning

  • Alhawas, Mohammed S;Almurayziq, Tariq S
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.93-96
    • /
    • 2022
  • Natural language processing (NLP) is utilized to understand a natural text. Text analysis systems use natural language algorithms to find the meaning of large amounts of text. Text classification represents a basic task of NLP with a wide range of applications such as topic labeling, sentiment analysis, spam detection, and intent detection. The algorithm can transform user's unstructured thoughts into more structured data. In this work, a text classifier has been developed that uses academic admission and registration texts as input, analyzes its content, and then automatically assigns relevant tags such as admission, graduate school, and registration. In this work, the well-known algorithms support vector machine SVM and K-nearest neighbor (kNN) algorithms are used to develop the above-mentioned classifier. The obtained results showed that the SVM classifier outperformed the kNN classifier with an overall accuracy of 98.9%. in addition, the mean absolute error of SVM was 0.0064 while it was 0.0098 for kNN classifier. Based on the obtained results, the SVM is used to implement the academic text classification in this work.

Absolute-Fair Maximal Balanced Cliques Detection in Signed Attributed Social Network (서명된 속성 소셜 네트워크에서의 Absolute-Fair Maximal Balanced Cliques 탐색)

  • Yang, Yixuan;Peng, Sony;Park, Doo-Soon;Lee, HyeJung
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.9-11
    • /
    • 2022
  • Community detection is a hot topic in social network analysis, and many existing studies use graph theory analysis methods to detect communities. This paper focuses on detecting absolute fair maximal balanced cliques in signed attributed social networks, which can satisfy ensuring the fairness of complex networks and break the bottleneck of the "information cocoon".

A Novel Two-Level Pitch Detection Approach for Speaker Tracking in Robot Control

  • Hejazi, Mahmoud R.;Oh, Han;Kim, Hong-Kook;Ho, Yo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.89-92
    • /
    • 2005
  • Using natural speech commands for controlling a human-robot is an interesting topic in the field of robotics. In this paper, our main focus is on the verification of a speaker who gives a command to decide whether he/she is an authorized person for commanding. Among possible dynamic features of natural speech, pitch period is one of the most important ones for characterizing speech signals and it differs usually from person to person. However, current techniques of pitch detection are still not to a desired level of accuracy and robustness. When the signal is noisy or there are multiple pitch streams, the performance of most techniques degrades. In this paper, we propose a two-level approach for pitch detection which in compare with standard pitch detection algorithms, not only increases accuracy, but also makes the performance more robust to noise. In the first level of the proposed approach we discriminate voiced from unvoiced signals based on a neural classifier that utilizes cepstrum sequences of speech as an input feature set. Voiced signals are then further processed in the second level using a modified standard AMDF-based pitch detection algorithm to determine their pitch periods precisely. The experimental results show that the accuracy of the proposed system is better than those of conventional pitch detection algorithms for speech signals in clean and noisy environments.

  • PDF

Efficient Masquerade Detection Based on SVM (SVM 기반의 효율적인 신분위장기법 탐지)

  • 김한성;권영희;차성덕
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.5
    • /
    • pp.91-104
    • /
    • 2003
  • A masquerader is someone who pretends to be another user while invading the target user's accounts, directories, or files. The masquerade attack is the most serious computer misuse. Because, in most cases, after securing the other's password, the masquerader enters the computer system. The system such as IDS could not detect or response to the masquerader. The masquerade detection is the effort to find the masquerader automatically. This system will detect the activities of a masquerader by determining that user's activities violate a profile developed for that user with his audit data. From 1988, there are many efforts on this topic, but the success of the offers was limited and the performance was unsatisfactory. In this report we propose efficient masquerade detection system using SVM which create the user profile.

Visual Analytics for Abnormal Event detection using Seasonal-Trend Decomposition and Serial-Correlation (Seasonal-Trend Decomposition과 시계열 상관관계 분석을 통한 비정상 이벤트 탐지 시각적 분석 시스템)

  • Yeon, Hanbyul;Jang, Yun
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1066-1074
    • /
    • 2014
  • In this paper, we present a visual analytics system that uses serial-correlation to detect an abnormal event in spatio-temporal data. Our approach extracts the topic-model from spatio-temporal tweets and then filters the abnormal event candidates using a seasonal-trend decomposition procedure based on Loess smoothing (STL). We re-extract the topic from the candidates, and then, we apply STL to the second candidate. Finally, we analyze the serial-correlation between the first candidates and the second candidate in order to detect abnormal events. We have used a visual analytic approach to detect the abnormal events, and therefore, the users can intuitively analyze abnormal event trends and cyclical patterns. For the case study, we have verified our visual analytics system by analyzing information related to two different events: the 'Gyeongju Mauna Resort collapse' and the 'Jindo-ferry sinking'.

Design and Evaluation of Video Summarization Algorithm based on EEG Information (뇌파정보를 활용한 영상물 요약 알고리즘 설계와 평가)

  • Kim, Hyun-Hee;Kim, Yong-Ho
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.4
    • /
    • pp.91-110
    • /
    • 2018
  • We proposed a video summarization algorithm based on an ERP (Event Related Potentials)-based topic relevance model, a MMR (Maximal Marginal Relevance), and discriminant analysis to generate a semantically meaningful video skim. We then conducted implicit and explicit evaluations to evaluate our proposed ERP/MMR-based method. The results showed that in the implicit and explicit evaluations, the average scores of the ERP / MMR methods were statistically higher than the average score of the SBD (Shot Boundary Detection) method used as a competitive baseline, respectively. However, there was no statistically significant difference between the average score of ERP/MMR (${\lambda}=0.6$) method and that of ERP/MMR (${\lambda}=1.0$) method in both assessments.