• 제목/요약/키워드: topic detection

검색결과 180건 처리시간 0.033초

부식 검출과 분석에 적용한 영상 처리 기술 동향 (Trends in image processing techniques applied to corrosion detection and analysis)

  • 김범수;권재성;양정현
    • 한국표면공학회지
    • /
    • 제56권6호
    • /
    • pp.353-370
    • /
    • 2023
  • Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.

모바일 사용자를 위한 컨텍스트 기반 마이크로 블로그 토픽 검출 기법 (Context-based Microblog Hot Topic Detection for Mobile Users)

  • 한종현;;우운택
    • 한국HCI학회논문지
    • /
    • 제6권1호
    • /
    • pp.35-42
    • /
    • 2011
  • 최근 모바일 장치를 통한 마이크로 블로그 활용이 늘고 있지만, 모바일 장치가 지닌 하드웨어 제약으로 인해 여전히 모바일 정보 브라우징에 어려움이 있다. 이를 해결하기 위해 모바일 사용자의 컨텍스트 정보를 활용하여 사용자의 관심 정보를 추론하는 연구가 활발히 진행되고 있다. 본 논문에서는 모바일 사용자의 컨텍스틀 이용하여 마이크로 블로그의 토픽을 추천하는 방법을 제안한다. 마이크로 블로그에서 사용자와 연관된 토픽을 추출하기 위해 제안한 방법은 사용자 위치, 행동, 기존에 작성한 블로그 그리고 사회적 관계 등의 사용자 컨텍스트를 모바일 장치로 부터 얻어 활용한다. 모바일 장치로부터 얻어온 컨텍스트는 마이크로 블로그 검색 범위를 줄이는데 뿐만 아니라 사용자의 관심을 추론하는 경우에도 활용된다. 추론된 사용자의 선호도를 기반으로 검색된 결과의 우선순위를 다시 결정한다. 제안한 방법을 통해 모바일 사용자들은 사용자가 관심을 가질만한 토픽의 마이크로 블로그 정보를 얻을 수 있을 것으로 기대한다.

  • PDF

Statistics based localized damage detection using vibration response

  • Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
    • Smart Structures and Systems
    • /
    • 제14권2호
    • /
    • pp.85-104
    • /
    • 2014
  • Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.

Capturing research trends in structural health monitoring using bibliometric analysis

  • Yeom, Jaesun;Jeong, Seunghoo;Woo, Han-Gyun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.361-374
    • /
    • 2022
  • As civil infrastructure has continued to age worldwide, its structural integrity has been threatened owing to material deteriorations and continual loadings from the external environment. Structural Health Monitoring (SHM) has emerged as a cost-efficient method for ensuring structural safety and durability. As SHM research has gradually addressed an increasing number of structure-related problems, it has become difficult to understand the changing research topic trends. Although previous review papers have analyzed research trends on specific SHM topics, these studies have faced challenges in providing (1) consistent insights regarding macroscopic SHM research trends, (2) empirical evidence for research topic changes in overall SHM fields, and (3) methodological validations for the insights. To overcome these challenges, this study proposes a framework tailored to capturing the trends of research topics in SHM through a bibliometric and network analysis. The framework is applied to track SHM research topics over 15 years by identifying both quantitative and relational changes in the author keywords provided from representative SHM journals. The results of this study confirm that overall SHM research has become diversified and multi-disciplinary. Especially, the rapidly growing research topics are tightly related to applying machine learning and computer vision techniques to solve SHM-related issues. In addition, the research topic network indicates that damage detection and vibration control have been both steadily and actively studied in SHM research.

Detecting Malicious Social Robots with Generative Adversarial Networks

  • Wu, Bin;Liu, Le;Dai, Zhengge;Wang, Xiujuan;Zheng, Kangfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5594-5615
    • /
    • 2019
  • Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.

A Novel Text Sample Selection Model for Scene Text Detection via Bootstrap Learning

  • Kong, Jun;Sun, Jinhua;Jiang, Min;Hou, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.771-789
    • /
    • 2019
  • Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.

SMD 및 PCB의 방향과 위치 탐지 (Detection of Orientation and Position of the SMD and PCB)

  • 정홍규;박래홍
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.80-90
    • /
    • 1994
  • In this paper, a high-resolution algorithm for detecting the orientation and position of the SMD and an algorithm for compensating the position and skew angle of the PCB are proposed. The proposed algorithm for the first topic consists of two parts. Its first part is a preprocessing step. in which corner points of the SMD are detected and they are grouped. Then the coarse angle of the principal axis is obtained by line fitting. The second part is a main processing step, in which the fuzzy Hough transform over the limited range of angles is applied to the corner points to detect precisely the orientation of the SMD. The position of the SMD is determined by using its four corner points. The proposed algorithm for the second topic is the one which detects a rotation angle and translation parameters of the PCB using a template matching method. The computer simulation shows that the parametes obtained by proposed algorithms are more precise than those by the several conventional methods considered. The proposed algorithms can be applied to the fast and accurate automatic inspection systems.

  • PDF

Discovering AI-enabled convergences based on BERT and topic network

  • Ji Min Kim;Seo Yeon Lee;Won Sang Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.1022-1034
    • /
    • 2023
  • Various aspects of artificial intelligence (AI) have become of significant interest to academia and industry in recent times. To satisfy these academic and industrial interests, it is necessary to comprehensively investigate trends in AI-related changes of diverse areas. In this study, we identified and predicted emerging convergences with the help of AI-associated research abstracts collected from the SCOPUS database. The bidirectional encoder representations obtained via the transformers-based topic discovery technique were subsequently deployed to identify emerging topics related to AI. The topics discovered concern edge computing, biomedical algorithms, predictive defect maintenance, medical applications, fake news detection with block chain, explainable AI and COVID-19 applications. Their convergences were further analyzed based on the shortest path between topics to predict emerging convergences. Our findings indicated emerging AI convergences towards healthcare, manufacturing, legal applications, and marketing. These findings are expected to have policy implications for facilitating the convergences in diverse industries. Potentially, this study could contribute to the exploitation and adoption of AI-enabled convergences from a practical perspective.

선삭가공에서 절삭력을 이용한 공구마멸의 감지 (Detection of Tool Wear using Cutting Force Measurement in Turning)

  • 윤재웅;이권용;이수철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.68-75
    • /
    • 2000
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper, and the static components of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force disparities are defined in this paper, and the relationships between normalized disparity and flank wear are established. Finally, Artificial neural network is used to learn these relationships and detect tool wear. According to the proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF

Background Subtraction in Dynamic Environment based on Modified Adaptive GMM with TTD for Moving Object Detection

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.372-378
    • /
    • 2015
  • Background subtraction is the first processing stage in video surveillance. It is a general term for a process which aims to separate foreground objects from a background. The goal is to construct and maintain a statistical representation of the scene that the camera sees. The output of background subtraction will be an input to a higher-level process. Background subtraction under dynamic environment in the video sequences is one such complex task. It is an important research topic in image analysis and computer vision domains. This work deals background modeling based on modified adaptive Gaussian mixture model (GMM) with three temporal differencing (TTD) method in dynamic environment. The results of background subtraction on several sequences in various testing environments show that the proposed method is efficient and robust for the dynamic environment and achieves good accuracy.