• Title/Summary/Keyword: topic detection

Search Result 180, Processing Time 0.023 seconds

Hot Topic Prediction Scheme Using Modified TF-IDF in Social Network Environments (소셜 네트워크 환경에서 변형된 TF-IDF를 이용한 핫 토픽 예측 기법)

  • Noh, Yeonwoo;Lim, Jongtae;Bok, Kyoungsoo;Yoo, Jaesoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.217-225
    • /
    • 2017
  • Recently, the interest in predicting hot topics has grown significantly as it has become more important to find and analyze meaningful information from a large amount of data flowing in social networking services. Existing hot topic detection schemes do not consider a temporal property, so they are not suitable to predict hot topics that are rapidly issued in a changing society. This paper proposes a hot topic prediction scheme that uses a modified TF-IDF in social networking environments. The modified TF-IDF extracts a candidate set of keywords that are momentarily issued. The proposed scheme then calculates the hot topic prediction scores by assigning weights considering user influence and professionality to extract the candidate keywords. The superiority of the proposed scheme is shown by comparing it to an existing detection scheme. In addition, to show whether or not it predicts hot topics correctly, we evaluate its quality with Korean news articles from Naver.

A Study on the Characteristics of Opinion Retrieval Using Term Statistical Analysis in Opinion Documents (의견 문서의 단어 통계 분석을 통한 의견 검색 특성에 관한 연구)

  • Han, Kyoung-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.21-29
    • /
    • 2010
  • Opinion retrieval which searches the opinions expressed in documents by users cannot outperform significantly yet traditional topical retrieval which searches the facts. Therefore, the focus of this paper is to identify the statistical characteristics which can be applied to opinion retrieval by comparing and analyzing the term statistics of opinion and non-opinion documents in the blog domain. The TREC Blogs06 collection and 150 TREC topics are used in the experiments. The difference between term probability distributions in opinion documents is measured by JS divergence, and the difference according to the topic types and topic domains is also investigated. Moreover, the term probabilities of opinion terms are analyzed comparatively. The main findings of this study include the following: it is necessary to consider the topic-specific characteristics for the opinion detection; it is effective to extract positive and negative opinion terms according to the topics; the topic types are complementary to the topic domains; and special attention has to be given to the usage of the positive opinion terms.

Design of Topic Detection and Tracking System for QA in Encyclopedia (QA를 위한 백과사전 사건 추적 시스템의 설계)

  • Jang Hye-Ju;Jung Yu-Chel;Kang So-Yeong;Song Sa-Hwang;Un Jin;Song Hoon;Myaeng Sung-Hyon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.22-24
    • /
    • 2006
  • 본 논문은 백과사전 QA에서 여러 문서에서 정답을 추출한 후 종합하여 답을 출력하여야 하는 질의를 위한 백과사전 사건 추적 시스템을 제안한다. 본 시스템은 사건 관련 질문과 문서의 속성을 반영할 수 있는 템플릿을 정의하여 문서를 추적하며, 하나의 사건은 '제목' '시간', '장소' '주체', '범주'의 5가지 속성을 가진다. 이러한 방법론을 통하여 기존 QA 시스템의 정답 추출 성능 향상에 도움을 주고, 정보 구성(organizing)과 TDT(Topic Detection and Tracking) 연구에서의 새로운 관점과 방향을 제시하고자 한다.

  • PDF

Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends (자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구)

  • Yu, So-Young
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.1
    • /
    • pp.153-169
    • /
    • 2015
  • The combined approach of using ego-centric network analysis and dynamic citation network analysis for refining the result of LDA-based topic modeling was suggested and examined in this study. Tow datasets were constructed by collecting Web of Science bibliographic records of White LED and topic modeling was performed by setting a different number of topics on each dataset. The multi-assigned top keywords of each topic were re-assigned to one specific topic by applying an ego-centric network analysis algorithm. It was found that the topical cohesion of the result of topic modeling with the number of topic corresponding to the lowest value of perplexity to the dataset extracted by SPLC network analysis was the strongest with the best values of internal clustering evaluation indices. Furthermore, it demonstrates the possibility of developing the suggested approach as a method of multi-faceted research trend detection.

Keyword Extraction from News Corpus using Modified TF-IDF (TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법)

  • Lee, Sung-Jick;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.

  • PDF

Emerging Topic Detection Using Text Embedding and Anomaly Pattern Detection in Text Streaming Data (텍스트 스트리밍 데이터에서 텍스트 임베딩과 이상 패턴 탐지를 이용한 신규 주제 발생 탐지)

  • Choi, Semok;Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.9
    • /
    • pp.1181-1190
    • /
    • 2020
  • Detection of an anomaly pattern deviating normal data distribution in streaming data is an important technique in many application areas. In this paper, a method for detection of an newly emerging pattern in text streaming data which is an ordered sequence of texts is proposed based on text embedding and anomaly pattern detection. Using text embedding methods such as BOW(Bag Of Words), Word2Vec, and BERT, the detection performance of the proposed method is compared. Experimental results show that anomaly pattern detection using BERT embedding gave an average F1 value of 0.85 and the F1 value of 1 in three cases among five test cases.

Out-Of-Domain Detection Using Hierarchical Dirichlet Process

  • Jeong, Young-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • With improvement of speech recognition and natural language processing, dialog systems are recently adapted to various service domains. It became possible to get desirable services by conversation through the dialog system, but it is still necessary to improve separate modules, such as domain detection, intention detection, named entity recognition, and out-of-domain detection, in order to achieve stable service offer. When it misclassifies an in-domain sentence of conversation as out-of-domain, it will result in poor customer satisfaction and finally lost business. As there have been relatively small number of studies related to the out-of-domain detection, in this paper, we introduce a new method using a hierarchical Dirichlet process and demonstrate the effectiveness of it by experimental results on Korean dataset.

A Comparison of Scene Change Localization Methods over the Open Video Scene Detection Dataset

  • Panchenko, Taras;Bieda, Igor
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2022
  • Scene change detection is an important topic because of the wide and growing range of its applications. Streaming services from many providers are increasing their capacity which causes the industry growth. The method for the scene change detection is described here and compared with the State-of-the-Art methods over the Open Video Scene Detection (OVSD) - an open dataset of Creative Commons licensed videos freely available for download and use to evaluate video scene detection algorithms. The proposed method is based on scene analysis using threshold values and smooth scene changes. A comparison of the presented method was conducted in this research. The obtained results demonstrated the high efficiency of the scene cut localization method proposed by authors, because its efficiency measured in terms of precision, recall, accuracy, and F-metrics score exceeds the best previously known results.

Step detection using accelerometer sensor on mobile phone

  • Thang, Hoang Minh;Viet, Vo Quang;Choi, Deok-Jai
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.83-85
    • /
    • 2012
  • Gait analysis through wearable sensors is becoming a key research topic in mobile. In gait analysis, step detection is one of the most important processes that will lay down the foundation for future implementation. In this paper, we will propose a simpler algorithm to determine and analyze the steps using accelerometer sensor built-in mobile phone that physically placed into the trouser pocket. This is the location where most of mobile devices are. With 5 volunteers walking in 160 seconds, the accuracy of this method is approximately 98.5%.

  • PDF