• 제목/요약/키워드: top emission

검색결과 293건 처리시간 0.055초

High reflective anode for top emission OLED

  • Pang, Hee-Suk;Han, Chang-Wook;Kim, Ki-Yong;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.820-823
    • /
    • 2004
  • We present high reflective anode for top emission OLED. Anode consists of two layers, which are increasing the ability of hole injection and the reflectivity of emitted light. Thin Cr is deposited on AlNd that has a high thermal resistance and reflectivity. The current-voltage characteristics of Cr(30${{\AA}}$)/AlNd(1000${{\AA}}$) anode are poor but these of Cr(50${{\AA}}$)/AlNd(1000${{\AA}}$) anode are superior to these of Cr(30${{\AA}}$)/AlNd(1000${{\AA}}$) and the work function of cr(50${{\AA}}$)/AlNd(1000${{\AA}}$) is higher that of Cr(30${{\AA}}$)/AlNd(1000${{\AA}}$).

  • PDF

Optical Simulation for Transparent and Top Emission PLEDs to Optimize the Metal/ITO Cathode

  • Tsai, Yao-Chou;Chen, Chen-Chun;Liu, Kou-Chen;Chang, Yung-Ting;Lee, Jiun-Haw
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1422-1424
    • /
    • 2007
  • A simulation method has been purposed in this paper to optimize the stack structure of metal/ITO cathode for full transparent or top emission devices. The result demonstrates that the complexity of the two proper layers thicknesses design is reduced. Finally, the experiment data also strain the simulation result.

  • PDF

Highly Flexible Low Power Consumption AMOLED Displays on Ultra-Thin Stainless Steel Substrates

  • Hack, Mike;Ma, Rui-Qing;Rajan, Kamala;Brown, Julie J.;Cheon, Jun-Hyuk;Kim, Se-Hwan;Kang, Moon-Hyo;Lee, Won-Gyu;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.171-174
    • /
    • 2008
  • We present results demonstrating that low power consumption phosphorescent AMOLED displays can be fabricated on ultra-thin ($25{\mu}m$) stainless steel substrates, combining an amorphous silicon backplane with a top emission phosphorescent OLED frontplane. We will present preliminary results of flexibility testing on these displays.

  • PDF

OLED를 위한 진공 열 증착 투명 음극 형성 기술 (Vacuum thermal evaporated transparent cathodes for organic light-emitting devices)

  • 문대규
    • 진공이야기
    • /
    • 제1권2호
    • /
    • pp.19-23
    • /
    • 2014
  • Transparent and top emission organic light-emitting device (OLEDs) are the important issues in realizing new display applications such as see-through electronic displays, and flexible displays. The cathode of the transparent and top emission OLEDs should be transparent in the visible light and should not give any damage to the underlying organic layers, in addition to its intrinsic role of injecting electrons into the organic layers. Several authors have investigated the transparent conducting oxide films prepared by sputtering methods. They have introduced the sophisticated sputtering process for reducing the damages. Other groups have developed thermally evaporated transparent cathodes which are believed to be damage free without causing any permanent defect to the organic layers. This review focuses on the vacuum evaporated damage free transparent cathodes.

Development of a 14.1 inch Full Color AMOLED Display with Top Emission Structure

  • Jung, J.H.;Goh, J.C.;Choi, B.R.;Chai, C.C.;Kim, H.;Lee, S.P.;Sung, U.C.;Ko, C.S.;Kim, N.D.;Chung, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.793-796
    • /
    • 2005
  • A structure and a design of device were developed to fabricate large-scale active matrix organic light-emitting diode (AMOLED) display with good color purity and high aperture ratio. With these technologies, we developed a full color 14.1 inch WXGA AMOLED display. For the integration of OLED on an active matrix a-Si TFT backplane, an efficient top emission OLED is essential since the TFT circuitry covers a large position of the pixel aperture. These technologies will enable up the OLED applications to larger size displays such as desktop monitors and TVs.

  • PDF

The triple layer anode for flexible top emission organic lightemitting devices

  • Chung, Sung-Mook;Hwang, Chi-Sun;Lee, Jeong-Ik;KoPark, Sang-Hee;Yang, Yong-Suk;Do, Lee-Mi;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.698-701
    • /
    • 2007
  • A top emission organic light emitting diode comprising of a triple anode on polycarbonate $film/TNATA/NPB/Alq_3:C545T/cathodes$ has been fabricated. The triple layer structure of Cr/Al/Cr allowed for fabrication of a crack-free anode and provided better higher work function than ITO anode.The anode showed compatibility with flexible plastic substrate and no crack was formed during bending test while ITO anode showed crack.

  • PDF

HDP-CVD를 이용한 OLED용 수분침투 방지막에 대한 연구 (Thin film permeation barrier for OLED using HDP-CVD)

  • 김창조;신백균;최윤;이붕주;김병수;이병수;최창락
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1398-1399
    • /
    • 2006
  • 현재 상용화된 OLED 소자는 최대 단점인 수분 취약성의 원인으로 top emission과 flexible 타입으로 제조되는데 장애가 되고 있다. 따라서 top emission 방식과 flexible한 소자를 실현하기 위해 수분 및 산소 침투를 방지하기 위한 유전체 막의 실험이 진행되고 있는데, 본 실험에서는 기존의 PECVD보다 plasma의 density가 높은 HDP(High Density Plasma)-CVD를 사용해 SiOx 및 SiNx 유전체 film을 증착하였고 MOCON 테스트를 통한 수분침투 방지막으로써의 가능성을 검증하였다.

  • PDF

Top Emission OLED를 위한 금속을 이용한 투명전극 형성 (Formation of Transparent Metal Electrode for Top Emission OLEDs)

  • 김소연;하미영;문대규;이찬재;한정인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.457-458
    • /
    • 2006
  • Transparent metal cathodes using Ca/Ag, Ba/Ag double layers have been fabricated to investigate its optical transmission. The transmission spectra show that Ca/Ag and Ba/Ag double layers result in higher transmittance compared to Ag single layer. The Ba/Ag double layer shows over 80% transmittance at 400 nm and 70% at 700 nm. The electroluminescence efficiency of fluorescent TEOLED using Ba/Ag transparent metal cathode was 10 ~ 15 cd/A.

  • PDF

Top emission inverted organic light emitting diodes with $N_{2}$ plasma treated Al bottom cathodes

  • Kho, Sam-Il;Shon, Sun-Young;Kwack, Jin-Ho;Jung, Dong-Geun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.889-892
    • /
    • 2003
  • Effects of $N_{2}$ plasma treatment of the Al bottom cathode on the characteristics of top emission inverted organic light emitting diodes (TEIOLEDs) were studied. TEIOLEDs were fabricated by depositing an Al bottom cathode, a tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$ emitting layer, an N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-diphenyl-4,4'diamine (TPD) hole transport layer, and an indium tin oxide (ITO) top anode sequentially. The Al bottom cathode layer was subjected to $N_{2}$ plasma treatment before deposition of the $Alq_{3}$ layer. X-ray photoelectron spectroscopy suggested that the existence of and the amount of $AIN_x$ between the $Alq_{3}$ emitting layer and the Al bottom cathode significantly affect the characteristics of TEIOLEDs. The maximum external quantum efficiency of the TEIOLED with an Ai bottom cathode subjected to $N_{2}$ plasma treatment for 30 s was about twice as high as that of the TEIOLED with an untreated Al bottom cathode.

  • PDF

전면 발광 유기 발광 소자용 반투명 금속의 전기적 및 광학적 특성 (Electrical and Optical Properties of Semitransparent Metal Electrodes for Top-emission Organic Light-emitting Diodes)

  • 신은철;안희철;김태완
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.938-942
    • /
    • 2008
  • Electrical and optical properties of semitransparent Ag and Al layer were studied, which are used for the electrodes in top-emission organic light-emitting diodes. Sheet resistance and transmittance of visible light through a thin layer were measured and analyzed. Several thin metal layers of Ag and Al were deposited onto a glass substrate up to a thickness of 50 nm using a thermal evaporation. Sheet resistance measurements show that a layer thickness is needed more than 15 nm and 20 nm for Ag and Al, respectively, when a proper sheet resistance is assumed to be less than $50{\Omega}/sq$. From the measurements of transmittance of visible light through a thin-metal layer, metallic behavior was observed when the layer thickness is over 25 nm for both films. Thus, from a study of sheet resistance and transmittance of visible light, a minimum proper thickness of semitransparent metal layer is 20 nm and 25 nm for Ag and Al, respectively.