• 제목/요약/키워드: top coating

검색결과 245건 처리시간 0.034초

기체분리용 세라믹 복합분리막의 개발 : IV. ${\gamma}$-알루미나 분리막의 투과 특성 (Development of Ceramic Composite Membranes for Gas Separation: IV. Permeation Characteristics of ${\gamma}$-Alumina Membranes)

  • 현상훈;강범석;최두진
    • 한국세라믹학회지
    • /
    • 제29권12호
    • /
    • pp.970-980
    • /
    • 1992
  • ${\gamma}-alumina$ membranes were prepared by sol-gel dip coating or pressurized coating of boehmite sols on slipcasted ${\gamma}-alumina$ support tubes. The particle size of sols synthesized via the modified Yoldas-method could be controlled below 5 mn according to the mole ratio of nitric acid/aluminumtri-sec-butoxide (0.07~1.0). The reproducible crack-free composite membranes were produced by the 2nd dip coating or the pressurized coating technique using very stable sols with the particle size of 45 nm. Nitrogen gas permeability through the top-layer in the composite membrane was about $70~55{\times}10^{-7}\;mol/m^2{\cdot}s{\cdot}Pa$. The thermal stability of the top layer was proved to be good enough upto the heat-treatment temperature of $500^{\circ}C$.

  • PDF

Study of Implementation of Broadband Antireflection Coating for Luminescent Solar Concentrators to Optimized the Efficiency

  • Duy, Song Ngo
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.59-63
    • /
    • 2022
  • In this study, we study of luminescent solar concentrators comprise thick glass with broadband antireflection coating deposited on the top surfaces and inorganic phosphor layers contacted on the bottom surfaces. Solar cells are contacted to the lateral surfaces of the glass. Experimental results show the broadband antireflection coating increased the short-circuit current of the solar cell.

플라즈마 용사 열차폐 코팅의 열화에 따른 접착강도 평가 (Evaluation of Bond Strength of Isothermally Aged Plasma Sprayed Thermal Barrier Coating)

  • 김대진;이동훈;구재민;송성진;석창성;김문영
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.569-575
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.

바나듐 및 크롬을 포함하는 다 성분 Boride 코팅의 생성 및 특성 평가 (Formation of Multi-Component Boride Coatings Containing V and/or Cr and Evaluation of Their Properties)

  • 이의열;윤상혁;김종하
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.211-217
    • /
    • 2016
  • Boride coating applied on steam turbine parts of power plants has provided good particle erosion resistance under temperature of $550^{\circ}C$, but it isn't able to protect the parts effectively any more in ultra super critical (USC) steam turbine which is being operated up to temperature of $650^{\circ}C$. To ensure stable durability for USC steam turbine parts, an alternative coating replacing boride coating should be developed. In this study, multi-component boride coatings containing elements such as chromium (Cr) and vanadium (V) were formed on base metal (B50A365B) using thermochemical treatment method called by pack cementation. The thermochemical treatments involve consecutive diffusion of boron(B) and Cr or/and V using pack powders containing diffusion element sources, activators and diluents. The top layer of Cr-boride coating is primarily consisted of $Cr_2B_3$ and $Cr_5B_3$, while that of V-boride coating is mostly consisted of $VB_2$ and $V_2B_3$. The (Cr,V)-boride coating is consisted of $Cr_2B_3$, $Cr_5B_3$ and $V_2B_3$ mostly. The top surfaces of 3 multi-component boride coatings show hardness of $3200-3400H_v$, which is much higher than that of boride, about $1600-2000H_v$. In 5 wt.% NaCl solution immersion tests, the multi-component boride coatings show much better corrosion resistance than boride coating.

Minimizing Zinc Consumption In Hot-Dip Galvanizing Lines

  • Bright, Mark;Ellis, Suzanne
    • Corrosion Science and Technology
    • /
    • 제10권2호
    • /
    • pp.43-46
    • /
    • 2011
  • Zinc consumption in a continuous galvanizing line is one of the highest operating cost items in the facility and minimizing zinc waste is a key economic objective for any operation. One of the primary sources of excessive loss of zinc is through the formation of top dross and skimmings in the coating pot. It has been reported that the top skimmings, manually removed from the bath, typically consist of more than 80% metallic zinc with the remainder being entrained dross particles ($Fe_2Al_5$) along with some oxides. Depending on the drossing practices and bath management, the composition of the removed top skimmings may contain up to 2 wt% aluminum and 1 wt% iron. On-going research efforts have been aimed at in-house recovery of the metallic zinc from the discarded top skimmings prior to selling to zinc recycling brokers. However, attempting to recover the zinc entrapped in the skimmings is difficult due to the complex nature of the intermetallic dross particles and the quality and volume of the recycled zinc is highly susceptible to fluctuations in processing parameters. As such, an efficient method to extract metallic zinc from top skimmings has been optimized through the use of a specialized thermo-mechanical process enabling a continuous galvanizing facility to conserve zinc usage on-site. Also, through this work, it has been identified that filtration of discrete dross particles has been proven effective at maintaining the cleanliness of the zinc. Future efforts may progress towards expanded utilization of filters in continuous galvanizing.

폴리아닐린을 이용한 강 구조물용 방청도료의 제조 및 특성 (Preparation and Characteristics of Anti-Corrosive Coatings for Steel Structures using Polyaniline)

  • 김태옥;공승대;박진우;함현식
    • 한국응용과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.230-237
    • /
    • 2006
  • Anti-corrosive coatings for steel structures with an alternative anti-corrosive pigment, polyaniline was prepared and anti-corrosive characteristics of the prepared coatings were investigated. The structure of the polyaniline was identified by using FT-IR, UV/Vis. and TGA analysis, and the anti-corrosive properties were analyzed from the results of the salt spray experiment. We found that the anti-corrosion properties of the prepared coatings varied in accordance with the types of primer coating resins as well as with the existence and nonexistence of the top coating. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using the single-packaged urethane resin as the primer coating resin and the urethane resin as the top coating resin.

용융 55%Al-Zn 중에서 세라믹 용사 피막의 침식 거동에 관한 연구 (A Study on the Erosion Behavior of the Ceramic Sprayed Coating Layer in the Molten 55% Al-Zn)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.51-59
    • /
    • 2000
  • Sink roll has been used in molten 55%Al-Zn alloy bath of continuous galvanizing line for sinking and stabilizing working steel strip in molten metal bath. In the process, the sink roll body inevitably build up dross compounds and pitting on the sink roll surface during 55%Al-Zn alloy coated strip production, and the life time of the sink roll is shorten by build up dross compounds and pitting. The present study examined the application of thermally sprayed ceramic coatings method on sink roll body for improving erosion resistance at molten 55% Al-Zn pool. In this experiment, the stainless steels such as STS 316L and STS 430F were used as the substrate materials. The CoNiCr and WE-Co powder were selected as bond coating materials. Moreover $Al_2O_3-ZrO_2-SiO_2 and ZrO_2-SiO_2$ powders selected as the top coating materials. Appearances of the specimens before and after dipping to molten 55%Al-Zn pool were compared and analyzed. As a result of this study, STS430F of substrate, WC-Co of bond spray coatings, $ZrO_2-SiO_2$ power of top spray coatings is the best quality in erosion resistance test at molten 55%Al-Zn pool

  • PDF

열피로에 의한 세라믹 코팅재의 파손 (Failure of Ceramic Coatings Subjected to Thermal Cyclings)

  • 한지원
    • 한국안전학회지
    • /
    • 제20권2호
    • /
    • pp.1-5
    • /
    • 2005
  • An experimental study was conducted to develop an understanding of failure of ceramic coating when subjected to a thermal cycling. Number of cycles to failure were decreased as the coating thickness and the oxide of bond coat were increased. Using the finite element method, an analysis of stress distribution in ceramic coatings was performed. Radial compressive stress was increased in the top/bond coat interface with increasing coating thickness and oxide of bond coat.

접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향 (Effects of the Thickness of Bond Coating on the Thermal Stress of TBC)

  • 김형남;최성남;장기상
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 춘계학술발표대회 개요집
    • /
    • pp.228-231
    • /
    • 2000
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF