• Title/Summary/Keyword: tooth bleaching agent

Search Result 36, Processing Time 0.024 seconds

Effect of tooth bleaching agents on color of tooth depend on content of carbamide peroxide (Carbamide peroxide의 함량에 따른 치아미백제의 치아에 대한 효과)

  • Chung, Suk-Min;Nam, Sang-Yong;Kwak, Dong-Ju
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.85-93
    • /
    • 2001
  • The purpose of this study was to evaluate the effects of commercial home-tooth bleaching agents on the color of tooth. Twenty five sound extracted teeth were randomly divided into five groups. The color differences between before and after treatment with five types of tooth bleaching agents (7.5% hydrogen peroxide Nite White $Excel^{(R)}$, 10% carbamide peroxide Nite White $Excel^{(R)}$, 16% carbamide peroxide Nite White $Excel^{(R)}$, 10% carbamide peroxide Insta-BriteTM, 20% carbamide peroxide Insta-$Brite^{TM}$) were evaluated. The results were as follows: 1. By 2 week home tooth bleaching agent applications, the values ($L^*$) of bovine teeth increased as high as 4.38 $\sim$ 8.80 when comparing to those of the samples before treatment, and the color difference (${\Delta}E^*$) showed as high as 10.16 $\sim$ 15.04. 2. 16% carbamide peroxide Nite White Excel induced significantly greater ${\Delta}L^*$ than other test edgroups except for 7.5% hydrogen peroxide Day White Excel, and significantly greater ${\Delta}E^*$ than other tested groups by 2 week bleaching agent treatments (p<0.01). 3. 16% carbamide peroxide Nite White Excel(${\Delta}L^*$=8.80, ${\Delta}E^*$=15.04) induced significantly greater ${\Delta}L^*$ and ${\Delta}E^*$ than 10% carbamide peroxide Nite White Excel(${\Delta}L^*$=5.01, ${\Delta}E^*$=10.16)(p<0.01), but significant difference between 10% carbamide peroxide Insta-Brite(${\Delta}L^*$=4.38, ${\Delta}E^*$=10.51) and 20% carbamide peroxide Insta-Brite(${\Delta}L^*$=5.63, ${\Delta}E^*$=11.23) was not shown in ${\Delta}L^*$ and ${\Delta}E^*$(p>0.01). 4. 16% carbamide peroxide Nite White Excel(${\Delta}L^*$=8.80, ${\Delta}E^*$=15.04) which were applied in night time induced significantly greater ${\Delta}L^*$ and ${\Delta}E^*$ than 7.5% hydrogen peroxide Day White Excel(${\Delta}L^*$=8.47, ${\Delta}E^*$=12.75) which were applied in day time. Conclusions: These results demonstrate that all the commercial home-tooth bleaching agents have appreciable bleaching effect on teeth, and the effects of home-tooth bleaching agents which are used during night time are affected by content of carbamide peroxide. Especially the whitening effect of home tooth bleaching agents that are used through night time is greater than that of short time-applying tooth bleaching agent.

  • PDF

Surface Damage and Bleaching Effect according to the Application Type of Home Tooth Bleaching Applicants

  • Tak, Na-Yeoun;Lim, Do-Seon;Lim, Hee-Jung;Jung, Im-Hee
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.252-260
    • /
    • 2020
  • Background: In this study, the bleaching effect and surface damage of two types of over-the-counter home tooth bleaching agents were explored using an in vitro study of bleaching agents applied to bovine teeth specimens for 14 days. Methods: Domestic over-the-counter home tooth bleaching agents of gel and patch form that shared common active ingredients and manufacturers were selected and tested. The experiment specimens were made using composite resin with bovine tooth samples and then measured the initial microhardness. Specimens were then divided into a Gel group and a Patch group and underwent bleaching treatment once a day for two weeks for 30 to 60 minutes (recommended) or 7 hours. All specimens were coffee-stained prior to bleaching. The bleaching effect was measured using a spectrophotometer and surface damage was measured using a microhardness meter. Results: The difference in color following the bleaching procedure was positive in both the Gel and Patch group, although there were no statistically significant differences in bleaching effect between groups. There was no significant difference in bleaching effect based on duration. The microhardness test revealed that both the Gel group and the Patch group had surface damage after bleaching. The greatest surface damage was found in the Patch group that had undergone a 7-hour bleaching treatment, although the differences were not statistically significant. Conclusion: The bleaching effect of the home tooth bleaching agent was visible to the naked eye. However, longer applications than recommended did not result in greater bleaching, unlike consumers' expectations, and instead increased the chance of enamel damage. As such, there is a need for consumers to be alert and adhere to recommendations provided by each company.

Influence of pain-relieving therapies on inflammation and the expression of proinflammatory neuropeptides after dental bleaching treatment

  • da Silva, Livia Maria Alves Valentim;Cintra, Luciano Tavares Angelo;de Oliveira Gallinari, Marjorie;Benetti, Francine;Rahal, Vanessa;Ervolino, Edilson;de Alcantara, Sibele;Briso, Andre Luiz Fraga
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.20.1-20.14
    • /
    • 2020
  • Objectives: To minimize the tooth sensitivity caused by in-office bleaching, many dentists use non-steroidal anti-inflammatory drugs and topical desensitizing gels containing potassium nitrate and sodium fluoride. This study aimed to evaluate the influence of these substances on inflammation and the expression of substance P and calcitonin gene-related peptide in pulp nerve fibers. Materials and Methods: Seventy-two rats were divided into 6 groups as follows: GI, control; GII, only dental bleaching; GIII, only ibuprofen; GIV, ibuprofen administered 30 minutes before and after the bleaching treatment and every 12 hours until the analysis; GV, only topical application of a desensitizing agent; and GVI, topical application of a desensitizing agent before dental bleaching. Placebo gel was applied to the upper left jaw and the bleaching agent was applied to the upper right jaw in all groups. Subsequently, the groups were divided into 3 subgroups based on the time of analysis: 0, 24, and 48 hours after bleaching (n = 8). The rats were euthanized and the maxillae were processed and evaluated by histopathological and immunohistochemical analyses. The data were analyzed using the Kruskal-Wallis test, followed by the Dunn test (p < 0.05). Results: In the bleaching groups, the inflammatory process and expression of neuropeptides decreased over time. The animals in which a desensitizing agent was applied showed better results within 24 hours. Conclusions: The use of a desensitizing agent had positive effects on inflammation and pain-related neuropeptide expression, minimizing the painful effects of dental bleaching treatment.

The effect of tooth bleaching agent contained 35% hydrogen peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials (35% 과산화수소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 표면 거칠기에 미치는 영향)

  • Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.12 no.3
    • /
    • pp.533-541
    • /
    • 2012
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 35% hydrogen peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM) were used in the study. The specimens($8mm{\times}5mm$) were made by using a customized acrylic mold. Each material was divided into two groups equally(n=40) : experimental group(35% HP) and control group(distilled water). 35% HP group was treated 30 mim/5 days for 15 days. Each 30 minute treatment session consisted of two 15 minute cycles of gel application with 20 second light exposure. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : 35% HP group showed an apparent color change(${\Delta}E^*$) than control group. In particular, DY and KM showed a noticeable color change and statistically significant differences(p<0.05). 35% HP group showed a reduction in microhardness. Z350 and P60 does not have a statistically significant difference(p>0.05), DY and KM showed a statistically significant difference(p<0.05). Percentage microhardness loss(PML) of control group was 0.6 to 5.5% in the group, 35% HP group was 6.6 to 34.6%. Roughness was increased in 35% HP group after bleaching. Especially DY and KM were significantly increased(p<0.05). Conclusions : Bleaching agents may affect the surface of existing restorations; therefore, they should not be used indiscriminately when tooth-colored restorations are present.

THE EFFECT OF REMOVAL OF RESIDUAL PEROXIDE ON THE SHEAR BOND STRENGTH AND THE FRACTURE MODE OF COMPOSITE RESIN-ENAMEL AFTER TOOTH BLEACHING (생활치 표백술 후 수종의 자유 산소기 제거제 처리가 복합 레진-법랑질 전단 접착 강도 및 파절 양상에 미치는 영향)

  • 임경란;금기연;김애리;장수미
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.399-408
    • /
    • 2001
  • Tooth bleaching has been prevailing recently for its ability to recover the color and shape of natural teeth without reduction of tooth material. However, it has been reported that bleaching procedure adversely affects the adhesive bond strength of composite resin to tooth. At the same time the bond strength was reported to be regained by application of some chemical agents. The purpose of this in vitro study was to investigate the effect of the removal of residual peroxide on the composite- enamel adhesion and also evaluated fracture mode between resin and enamel after bleaching. Sixty extracted human anterior and premolars teeth were divided into 5 groups and bleached by combined technique using of office bleaching with 35 % hydrogen peroxide and matrix bleaching with 10% carbamide peroxide for 4 weeks. After bleaching, the labial surfaces of each tooth were treated with catalase, 70% ethyl alcohol, distilled water and filled with composite resin. Shear bond strength was tested and the fractured surfaces were also examined with SEM. Analysis revealed significantly higher bond strength values. (p<0.05) for catalase-treated specimens, but water-treated specimens showed reduction of bond strength, alcohol- treated specimens had medium value between the two groups(p<0.05). The fracture mode was shown that the catalase group and the alcohol group had cohesive failure but the water sprayed group had adhesive failure. It was concluded that the peroxide residues in tooth after bleaching seems to be removed by gradual diffusion and the free radical oxygen from peroxide prevents polymerization by combining catalyst in the resin monomer. Therefore it may be possible to eliminate the adverse effect on the adhesion of composite resin to enamel after bleaching by using water displacement solution or dentin bonding agent including it for effective removal of residual peroxide.

  • PDF

THE EFFICACY AND SAFETY OF 6% HYDROGEN PEROXIDE AS HOME TOOTH BLEACHING GEL (가정용치아미백제로서의 6% 과산화수소용액의 효과와 안전성)

  • Han, Soo-Boo;Park, Sang-Hyun;Moon, Hyeock-Soo
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.433-440
    • /
    • 1994
  • The purpose of this investigation was to study the efficacy and safety of 6% hydrogen peroxide gel as a daily home tooth bleaching gel. The subjects consisted of 20 male dental students representing a variety of acquired stain and each subject participated for a 4-week period. Tooth color analysis(Shade determination), sulcus bleeding index, probing depth and probing attachment level were done and recorded at baseline and at the end of each week of study. The results indicated that home bleaching gel containing 6% hydrogen peroxide was effective and caused no gingival inflammation. Sulcus bleeding index, probing depth and probing attachment level showed no change. In conclusion, 6% hydrogen peroxide gel is an effective and safe agent for daily home tooth bleaching.

  • PDF

The effect of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model (pH 순환 모형을 이용하여 15% 과산화요소를 함유한 치아미백제가 심미수복재의 색, 미세경도 및 거칠기에 미치는 영향)

  • Park, So-Young;Song, Min-Ji;Jeon, Su-Young;Kim, Sun-Young;Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.13 no.2
    • /
    • pp.351-360
    • /
    • 2013
  • Objectives : The purpose of this study was to evaluate the effects of tooth bleaching agent contained 15% carbamide peroxide on the color, microhardness and surface roughness of tooth-colored restorative materials by using pH cycling model. Methods : Four types of tooth-colored restorative materials, including a composite resin(Filtek Z350 ; Z350), a flowable composite resin(Filtek P60 : P60), a compomer(Dyract$^{(R)}$ AP ; DY), and a glass-ionomer cement(KetacTM Molar Easymix ; KM). were used in the study. Eighty-eight specimens of each material were fabricated, randomly divided into two groups(n=44): experimental group(15% carbamide peroxide) and control group(distilled water). These groups were then divided into four subgroups(n=11). All groups were bleached 4 hours per day for 14 days using pH cycling model. The authors measured the color, microhardness, and roughness of the specimens before and after bleaching. The data were analyzed with ANOVA and T-test. Results : Z350 and P60 showed a slight color change(${\Delta}E^*$), whereas DY and KM showed significantly color change(p<0.05). Among them, the greatest color change was observed in DY. Percentage microhardness loss(PML) of the distilled water group was 1.8 to 5.1%, and 15% peroxide peroxide group was 5.0 to 25.2%. Microhardness of DY and KM showed a statistically significant decrease(p<0.05). Roughness was increased in all groups after bleaching. Z350 and P60 does not have a significant difference(p>0.05), however DY and KM significantly increased more than the 0.2 ${\mu}m$(p<0.05). Conclusions : The effects of bleaching on restorative materials were material dependent. It is necessary to consider the type of the material before starting the treatment.

Effect of bleaching on human teeth and reduced treatment on negative influence -Review (치아 미백제가 치아에 미치는 영향과 부작용 최소화를 위한 처치에 관한 고찰)

  • Choi, Jae-Yoon;Shim, Youn-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.6 no.4
    • /
    • pp.481-493
    • /
    • 2006
  • The purpose of the review article was to summarize and discuss the available information concerning the effect of bleaching on human teeth and reduced treatment on negative influence. Tooth bleaching effect was differ from extent of concentration and application period of a tooth bleaching agent, certainly full knowledge prior treatment about adverse effect possible appearance and follow clinical treatment for the least reduce. It remains unclear in how far those observation may result in significant adverse effect under clinical conditions. Nevertheless, further investigation are necessary to elucidate these aspect more precisely. The findings of the study were as follows : 1. It is recommended to delay placement of restorations after termination of bleaching therapy for at least 1-3 weeks. 2. Reduced negative influence that is clinical feasibility of catalase in protecting bleached surface against Oxygen radical. 3. The residual peroxide in tooth after bleaching seems to be removed by gradual diffusion and it may be possible to eliminate the adverse effect on tooth by using water displacement solution, ethylalcohol and aceton including it for effective removal of free radical oxygen.

  • PDF

Effect of 35% Hydrogen Peroxide with Dicalcium Phosphate Dihydrate on the Tooth Whitening and Microhardness (35% 과산화수소에 제2인산칼슘를 함유한 치아미백제가 치아의 색과 경도에 미치는 영향)

  • Jeoung, Mi-Ae;Oh, Hye-Seung;Shim, Youn-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.235-242
    • /
    • 2010
  • The purpose of this study was to evaluate tooth whitening and microhardness after treatments with tooth bleaching agents containing dicalcium phosphate dihydrate (DCPD) and 35% hydrogen peroxide (HP) which were used in-office bleaching. Thirty enamel specimens were obtained from human premolars and randomly divided into 3 groups(n=10). Tooth bleaching agents were prepared with DCPD (0 g for controls, 0.1 g and 1 g for experimental groups) and HP solution (35% HP). All groups were applied to enamel surfaces for 60 min for 1 day. The pH of each tooth bleaching agent was measured. Tooth color, microhardness of enamel surfaces were also measured. The tooth bleaching agents containing DCPD showed a significant increase in pH compared to the ones without DCPD(p<0.05). Paired t-tests showed significant difference in color values of enamel before and after bleaching in all the groups(p<0.05). As a result, changes in color, containing DCPD group does not contain a statistically significant difference between groups was observed.(p>0.05). In all groups, tooth hardness after bleaching showed a significant decrease in microhardness (p<0.05). However, the DCPD concentration increased in the bleaching, microhardness values slightly decreased. Based on the above results, tooth bleaching agents containing DCPD and 35%HP were equally effective. Due to increases in pH and effective reduction of tooth surface decalcification, the surface characteristics are exposed to a reduced degree of negative effects, resulting in fewer constituent enamel alterations. Thus, commercial availability of the constituents of tooth whitening materials can be achieved.

DEGREE OF COLOR CHANGE AND DYE DEPOSITION ONTO COMPOSITE RESINS AFTER OFFICE BLEACHING IN VITRO (표백술에 의한 복합 레진의 색변화와 색소 침착 정도)

  • Choi, Nak-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.599-605
    • /
    • 2000
  • Among the effects of tooth bleaching on composite resins, degree of color change and dye deposition onto composite resins after office bleaching were investigated in vitro. Seventy two disc-shaped resin samples were fabricated with hybrid type composite resin, Z-100 under 3 different environments(24 samples for each environment) characterized by 3 kinds of light-curing intensity and duration($250mW/cm^2$-20sec., $250mW/cm^2$-40sec., $550mW/cm^2$-20sec.). As control, one-third samples of each group were not treated with bleaching agent. The remaining two-thirds samples of each group were treated with bleaching agent(bleaching group). Then, before thermocycling procedure in coffee bath, the half of the samples treated with bleaching agent were polished(polishing group) with polishing system. SofLex, but the other half(not-polishing group) and control group were not polished. Another 72 samples were also made with microfilled type composite resin. Sillux Plus and treated according to the experimental procedures mentioned above. The color of each resin sample was measured before bleaching, after bleaching, and after thermocycling preceded by bleaching. And color difference was evaluated. It was concluded as follows: 1. The amount of color change of resin samples after office bleaching was not statistically significant(p>0.05). But the samples which were treated with bleaching agent showed more color change than that of control group. 2. After thermocycling in coffee bath, the amount of color change of resin samples between control and bleaching group was not statistically significant(p>0.05). 3. After thermocycling in coffee bath, the polishing procedure of resin samples showed no statistically significant difference(p>0.05) between polishing and not-polishing group in the aspect of color change.

  • PDF