• 제목/요약/키워드: toolpath generation

검색결과 6건 처리시간 0.018초

플랫 앤드밀을 이용한 자유곡면 가공경로 생성 (The Toolpath Generation for Free-Formed Surface with the Flat Endmill)

  • 이건영;남원우;이상조
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.104-111
    • /
    • 2001
  • The toolpath generation for 3D shaped parts with adaptive isocurve is more precise than existing methods, and the machining time can be reduced. Whether adaptive isocurves are inserted or not is determined by the surface shape, but the number of curves inserted and the total path length vary with initial step lengths. In this paper, therefore, by introducing the concept of the scale factor into the initial path interval ; toolpath was regenerated.

  • PDF

자유 곡면의 CNC 가공을 위한 가공경로의 생성 (A Toolpath Generation for CNC Machining of Free-form Surfaces)

  • 성완;최종호;송오석
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.129-137
    • /
    • 1999
  • A parametric curve interpolator has been proposed for machining curves instead of a linear interpolator in which curves are approximated by a set of line segment. The parametric curve interpolator is superior to linear interpolator in machining time and contour error and generate exact position commands directly from curve equations. In this paper, a new toolpath generation method is proposed based on the parametric curve interpolator. This method retains all the benefits of parametric curve interpolator and can bound the scallop height within a specified value. By interpolating curves and surfaces directly from the mathematical equations, the amount of data from CAD/CAM system to CNC controller can be significantly reduced. The proposed method was implemented on a CNC controller and was confirmed to give a better result than the other existing method.

  • PDF

VLM-Slicer에서 절단 경로 생성을 위한 측면 형상 복원 (Surface Reconstruction for Cutting Path Generation on VLM-Slicer)

  • 이상호;안동규;양동열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.71-79
    • /
    • 2002
  • A new rapid prototyping process, Variable Lamination Manufacturing using a 4-axis-controlled hotwire cutter and expandable polystyrene foam sheet as a laminating material of the part (VLM-S), has been developed to reduce building time and to improve the surface finish of parts. The objective of this study is to reconstruct the surface of the original 3D CAD model in order to generate mid-slice data using the advancing front technique. The generation of 3D layers by a 4 axis-controlled hot-wire cutter requires a completely different procedure to generate toolpath data unlike the conventional RP CAD systems. The cutting path data for VLM-S are created by VLM-Slicer, which is a special CAD/CAM software with automatic generation of 3D toolpath. For the conventional sheet type system like LOM, the STL file would be sliced into 2D data only. However, because of using the thick layers and a sloping edge with the firstorder approximation between the top and bottom layers, VLM-Slicer requires surface reconstruction, mid-slice, and the toolpath data generation as well as 2D slicing. Surface reconstruction demands the connection between the two neighboring cross-sectional contours using the triangular facets. VLM-S employs thick layers with finite thickness, so that surface reconstruction is necessary to obtain a sloping angle of a side surface and the point data at a half of the sheet thickness. In the process of the toolpath data generation the surface reconstruction algorithm is expected to minimize the error between the ruled surface and the original parts..

삼각망 곡면의 3축 라운드엔드밀 가공을 위한 공구경로 생성 (Toolpath Generation for Three-axis Round-end Milling of Triangular Mesh Surfaces)

  • 정연찬
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.133-140
    • /
    • 2009
  • Presented in this paper is a method to generate round-endmill toolpaths for sculptured surfaces represented as a triangular mesh model. The proposed method is applicable in toolpath generation for ball-endmills and flat-endmills because the round-endmill is a generalized tool in three-axis NC (numerical control) milling. The method uses a wireframe model as the offset model that represents a cutter location surface. Since wireframe models are relatively simple and fast to calculate, the proposed method can process large models and keep high precision. Intersection points with the wireframe offset model and a tool guide plane are calculated, and intersection curves are constructed by tracing the intersection points. The final step of the method is extracting regular curves from the intersection curves including degenerate and self-intersected segments. The proposed method is implemented and tested, and a practical example is presented.

Voronoi Diagram 을 이용한 Stereo;ithography 의 향상된 레이져 주사경로 생성에 관한 연구 (A Study on Generation of the Advanced Laser Scanning Path for Stereolithography using Voronoi Diagrams)

  • 이기현;최홍태;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.405-409
    • /
    • 1997
  • Voronoi diagrams are applied in varios field such as NC toolpath generation, VLSI design and robot path planning because of their geometric charcteristics. In this paper, Voronoi diagrams are introduced on polygon constructed by line segments only and with constant offset. Bisector curves for two arbitrary objects, which is the combination of line segment and arc, are defined as parametric fuction where the parameter is used as offset. Offset curves are applied on the generation of laser scanning path for the stereolithography and shows a good result from several examples.

  • PDF

PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템 (PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • 한국CDE학회논문집
    • /
    • 제8권2호
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.