• Title/Summary/Keyword: tool shape

Search Result 1,358, Processing Time 0.029 seconds

Workpart and Setup Planning for NC Machining of Prismatic Model:Feature-Based Approach (형상인식에 의한 다면체모델의 NC 가공을 위한 소개 및 셋업계획)

  • 지우석;서석환;강재관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1078-1083
    • /
    • 1992
  • Extracting the process planning information from the CAD data is the key issue in integrated CAD/CAM system. In this paper, we develop algorithms for extracting the shape and setup configuration for NC machining of prismatic parts. In determining the workpart shape, the minimum-enclosing condept is applied so that the material waste is minimized. To minimize the number of setups, feature based algorithm is developed considrint the part shape, tool shape, and tool approach direction. The validity and effectiveness of the developed algorithms were tested by computer simulations.

  • PDF

민감도법을 이용한 단조 공정에서의 예비성형체 설계

  • 심현보;노현철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.291-296
    • /
    • 2000
  • The sensitivity method has been applied to find perform shape that results in the desired shape after forging. As a basic example, initial shape of specimen for the cylinder shape without barrelling after forging has been found. The method is then applied to various shapes of 3D free forging and initial shapes of the corresponding specimens after forging have been found successfully. The sensitivity method is proven to be an effective and accurate tool for the preform design.

  • PDF

Case studies for productivity enhancement on cold forging (냉간단조 생산성 향상 사례)

  • Choi, S.T.;Lee, I.H.;Kwon, Y.C.;Lee, J.H.;Lee, C.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.42-47
    • /
    • 2007
  • The characteristics of the tool system give many effects into the costs and qualities for the finished components. Therefore, a tool life is one of the important issues on cold forging industry. However, since variables related with tool life are many complicated, the studies for solution should be investigated by the systematic research approach. The shape and process changes of die, the hardness changes of material and the tolerance of dies to decrease the die stress are analyzed by the FEM software. The heat-treatment of tool material is investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, it is investigated that the shape and dimension of tool give effect into both tool life and quality of forged product..

  • PDF

5-axis Machining of Impellers using Geometric Shape Information and a Vector Net (기하학적 형상정보와 벡터망을 이용한 임펠러의 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • Two rotational motions of the 5-axis machine tool maximize the degree of freedom of the tool axis vector, which improves tool accessibility; however, this lowers feed speed and rigidity, which impairs machining stability. In addition, cutting efficiency is lowered when compared with a flat end mill because typically, the ball-end mill is used when machining by rotational motion. This study increased cutting efficiency by using a corner radius flat end mill during impeller roughing. Furthermore, we proposed a fixed controlled machining of the rotary motion using geometric shape information to improve the feed speed and machining stability. Finally, we proposed a finishing tool path generation method using a vector net to increase the convenience and practicality of tool path generation. To verify its effectiveness, we compared the machining time, shape accuracy, and surface quality of the proposed method and an existing dedicated module.

Effect of Welding Condition and Tool Shape on Defect Formation of Extruded AA6005 with Non-uniform Thickness using Load-Controlled Friction Stir Welding Technique (두께 불균일 AA6005 압출재의 하중제어 마찰교반접합에서 접합 조건과 툴 형상이 결함발생에 미치는 영향)

  • Yoon, Tae-Jin;Kang, Myung-Chang;Jung, Byong-Ho;Kang, Chung-Yun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.45-51
    • /
    • 2013
  • Friction stir welding using aluminum alloys has been widely applied for transportation vehicles because of the light specific weight, which can be used to obtain sound joint and high mechanical properties. This study shows the effects of rotation speed, welding speed, welding load, and tool shape on defect formation with extruded AA6005, which is used for railway vehicle structures of non-uniform thickness welded by friction stir welding using load control systems. Optical microscopy observations and liquid penetrant testing of each FSW joint were carried out in order to observe defect formation. Two kinds of defects, that of probe wear and that of lack of penetration in the bottom of the welded zone, were observed. In the case of using a taper shaped tool, the defect free zone is very narrow, within 100 kgf; however, in case of using a cylindrical shape tool, the defect free zone is wider.

Observation of Chip Shape and Tool Damage with Interrupted Cutting of Carbon Steel for Machine Structures(SM20C) (기계구조용 탄소강(SM20C)의 단속절삭시 칩의 형상 및 공구손상관찰)

  • Bae, Myung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • In interrupted cutting, the workpiece has a groove that impacts both the cutting tool and the workpiece. Therefore, cutting tool damage occurs rapidly. In this study, I performed interrupted cutting of carbon steel for machine structures (SM20C) using an uncoated carbide tool (SNMG120404, P20), and observed tool damage, cutting chip shape, and the workpiece surface. Results: Under the specific cutting conditions of feed rate = 0.066 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.1 mm; and feed rate = 0.105 mm/rev, cutting speed = 120 m/min, and depth of cut = 0.2 mm, the observed tool damage was small. Similar chip shape was observed (Expt. No. 1, 3, 7). Workpiece damage was observed (Expt. No. 3, 5, 7, 9).

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.

Machining Characteristics of Hemisphere Shape by Ball Endmilling (볼엔드밀가공에 의한 구면형상의 가공특성)

  • Wang, Duck Hyun;Kim, Won Il;Lee, Yun Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.5-14
    • /
    • 2002
  • Hemisphere shapes were machined for different tool paths and machining conditions with ball endmill cutters. It was also found out how feedrate affect the precision of the machining and also tried to study the most suitable feedrate in specific cutting condition. Tool deflection, cutting forces and shape accuracy were measured according to the inclination position of the sculptured surface. As the decreasing of inclination position angle, the tool deflection was increased due to the decreased cutting speed when the cutting edge is approaching toward the center. Tool deflection when upward cutting IS obtained less than that of downward cutting and down-milling in upward cutting showed the least tool deflection for the sculptured surface. For down-milling, the cutting resistance of the side wall direction is larger than that of feed direction. It was found that the tool deflection is getting better as tool path is going to far from the center for convex surface.

  • PDF

An Algorithm for Reducing the Tool Retraction Length in Zigzag Pocket Machining (Zigzag 포켓가공에서 공구후퇴 길이를 줄이는 알고리듬)

  • Kim, Byoung Keuk;Park, Joon Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.128-138
    • /
    • 2002
  • In this paper, we address how to reduce the length of tool retraction in a zigzag pocket machining. Tool retraction, in a zigzag pocket machining, is a non-cutting operation in which the tool moves to any remaining regions for machining. We developed an algorithm of generating tool retraction length in convex or concave polygonal shapes including islands. In the algorithm, we consider concave areas of cutting direction in the polygonal shape. Considering concave areas of cutting direction, the polygonal shape is decomposed to subregions which do not need any tool retraction. Using the proposed algorithm, we calculated the shortest length of tool retraction in cutting direction. Examples are shown to verify the validity of the algorithm.

Tool Deflection and Geometrical Accuracy in Side Wall Milling (측벽 밀링에서 공구 변형 및 형상 정밀도)

  • 류시형;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1811-1815
    • /
    • 2003
  • Investigated is the relationship between tool deflection and geometrical accuracy in side wall machining. Form error is predicted directly from the tool deflection without surface generation. Developed model can predict the surface form error about three hundred times faster than the previous method. Cutting forces and tool deflection are calculated considering tool geometry, tool setting error, and machine tool stiffness. The characteristics and the difference of generated surface shape in up milling and down milling are discussed. The usefulness of the presented method is verified from a set of experiments under various cutting conditions generally used in die and mold manufacture. This study contributes to real time surface shape estimation and cutting process planning for the improvement of geometrical accuracy.

  • PDF