• Title/Summary/Keyword: tool deflection

Search Result 196, Processing Time 0.025 seconds

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

A Study on Multiphase Optimization of Machine Tool Structures (공작기계구조물의 다단계 최적화에 관한 연구)

  • 이영우;성활경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.42-45
    • /
    • 2002
  • In this paper, multiphase optimization of machine Tool structure is presented. The final goal is to obtain 1) light weight, 2) statically and dynamically rigid. and 3) thermally stable structure. The entire optimization process is carried out in three phases. In the first phase, multiple static optimization problem with two objective functions is treated using Pareto genetic algorithm. where two objective functions are weight of the structure and static compliance. In the second phase, maximum receptance is minimized using simple genetic algorithm. And the last phase, thermal deflection to moving heat sources is analyzed using Predictor-Corrector Method. The method is applied to a high speed line center design which takes the shape of back-column structure.

  • PDF

A Modeling Method of Equivalent Vibratory System in End Milling (엔드밀링에서 등가 진동계 모델링)

  • 백대균;고태조;김희술
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.135-141
    • /
    • 2003
  • For the analysis of machined surface topography and machine-tool chatter, the cutting system is considered to be a single degree of freedom system. This paper presents a modeling method of equivalent vibratory system for precision cutting in end-milling using an impact test, an Autoregressive Moving Average (ARMA) mode] and a bisection method It has been shown that the proposed modeling method provides a good identification of the cutting system. The advantages of the proposed method in comparison to the existing method are that it is very easy and accurate.

Development of Side Impact Crash Simulation Methodology and Its Applications (측면충돌모의시험 방법 개발과 응용)

  • 하영호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Occupant protection in the side impact of a car became one of the most important issues of car crashworthiness due to high injury level in a side impact crash. An accurate simulation of the side impact crash is an essential tool for the reduction of development time and cost for side impact safety system. This paper describes a new test methodology that can accurately generate the crash pulses of a vehicle and a door in a very cost-effective manner, and then evaluates the injury values of the dummy for the various sled pulses. This test methodology is simple and easy to approach because the door velocity is controlled by the hydraulic actuator and brake and the seat velocity is only adjusted by the friction force of the hydraulic brake. The superiority of the proposed test methodology is proven by the evaluation of dummy's injury values according to the change of the pressure of the hydraulic brake and by the application as a tool for the development of side airbag.

  • PDF

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.

A Study on the Optimum Finish Allowance for Machining Accuracy Improvement in the End Milling Processes (엔드밀 가공의 정밀도 향상을 위한 최적정삭여유에 관한 연구)

  • 최종근;김형선;김성초
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.8-15
    • /
    • 2004
  • A significant error in the end milling processes is generated due to using slender tools of which the strengths are not sufficient. In order to obtain the desired machining accuracy, therefore, it is general that at first the rough cut is implemented, then the finish cut is followed. The rough cut eliminates large volume and the finish cut does the remained part. This remaining portion after the rough cut is called as the finish allowance. Larger finish allowances make it hard to get precise dimensions at a following finish cut. Smaller finish allowances are helpful for good dimension, but it sometimes is responsible for inferior surface qualities and over cuts. This study suggests a guidance for the optimum finish allowance for machining accuracy improvement, in which the rough cuts are regulated to remain the desired margins without any over cuts. Some experiments were carried out with various cutting conditions including the change of tool strengths and depth of cuts, and also extended to up millings as well as down millings.

A Study on Free Surface Cutting Force System of Conical Tipped Circular Cutting Edge Ball End Mill (圓錐팁 Ball End Mill 의 3次元 曲面切削力系에 관한 硏究)

  • 박천향;맹희구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.440-451
    • /
    • 1985
  • This study is concerned with the analysis of cutting force system acting on ball-nose end mill in three-dimensional surface machining process. Conical tipped circular cutting edge element model and free surface machining process types are proposed to apply oblique cutting theory, and then derived equations are used for numerical approach of cutting force curves by matrix method. This approach has a good agreement with experimental results both in magnitude and shape within the range of 15 percent, which was conformed on 6061-T6 aluminum workpiece having twofold curvatured surface. From the cutting load variation to edge location, it is confirmed that circular cutting edge shapes has a better cutting ability than that of straight and both have a singularity near a tool point. It is also verified that what kind of machining condition is recommendable for three-dimensional machining process in connection with deflection of the cutter to workpiece and tool point wearing or system stability.

Shape Design of Shearing Die for the Chassis Part with the Coupled Analysis of Shear and Die Structure (전단-구조연계해석을 이용한 섀시부품 전단금형의 형상설계)

  • Kim, S.H.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.261-266
    • /
    • 2022
  • To reduce the weight of the vehicle, the application of the high strength steel sheets to chassis parts is increased. High forming load is induced during the shearing process of steel chassis parts made of high strength steel, and the possibility of an eccentric load is increased depending on the product seating condition on the die, which decreases the stability and lifespan of the die. In this paper, a three-dimensional finite element analysis with the continuum element was conducted using the damage theory for the cam-trimming process of the front lower arm. The structural analysis of the trimming die was performed with the forming load result obtained from the analysis, and the amount of deflection and the stress distribution of the die during the shearing process were evaluated for the confirmation of the tool stability. The shape of the weak region of the die was modified according to structural analysis and then the stability was confirmed with the finite element analysis. The analysis result showed that the possibility of tool failure during cam-trimming process was remarkably reduced, and the reliability of the proposed modified design was validated.

A Study on the Wavelet Transform of Acoustic Emission Signals Generated from Fusion-Welded Butt Joints in Steel during Tensile Test and its Applications (맞대기 용접 이음재 인장시험에서 발생한 음향방출 신호의 웨이블릿 변환과 응용)

  • Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • This study was carried out fusion-welded butt joints in SWS 490A high strength steel subjected to tensile test that load-deflection curve. The windowed or short-time Fourier transform(WFT or STFT) makes possible for the analysis of non-stationary or transient signals into a joint time-frequency domain and the wavelet transform(WT) is used to decompose the acoustic emission(AE) signal into various discrete series of sequences over different frequency bands. In this paper, for acoustic emission signal analysis to use a continuous wavelet transform, in which the Gabor wavelet base on a Gaussian window function is applied to the time-frequency domain. A wavelet transform is demonstrated and the plots are very powerful in the recognition of the acoustic emission features. As a result, the technique of acoustic emission is ideally suited to study variables which control time and stress dependent fracture or damage process in metallic materials.

A Study on the Measurement for Table Deflection using Laser Interferometer and Simulation (레이저를 이용한 테이블 처짐 측정과 시뮬레이션에 관한 연구)

  • 김민주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.55-63
    • /
    • 1999
  • The acceleration of the performance of machine tools influences the development of the semi-conductor and optical technology as the development of NC and measurement technology. Because the measurement has been done to unload condition without considering of mechanical stiffness in the case of machining center as we measure the quasi-static error of machine tools on general study people who works on the spot has many problems on the data value. Also there are no satisfiable results until now in spite of many studys about this because the deflections of the table and the shaft supporting a workpiece influence, influence the accuracy of the table and shaft supporting a workpiece influence the accuracy of the workpiece. And there is doubt about the inspection method of measured error. In this paper Therefor we will help working more accurately on the spot by measuring analyzing displaying the defoec-tion of the table and support shaft when we load on the table and the support shaft of machining center using laser interfer-ometer. Also we try to settle new conception of the measurement method and more accurate grasp of the deflection tenden-cy by verifing the tendency of the error measured through the comparison of the simulated error measured through the comparison of the simulated error using ANSYS a common finite element analysis program which is able to measure heat deformation material deformation and error resulted from this study.

  • PDF