• Title/Summary/Keyword: tonic contraction

Search Result 40, Processing Time 0.028 seconds

Frequency analysis of the tonic vibration reflex of the hand flexor muscles

  • 박희석
    • Proceedings of the ESK Conference
    • /
    • 1994.04a
    • /
    • pp.49-51
    • /
    • 1994
  • The aims of this study were first to determine the influence of vibration displacement amplitude $(200{\mu}m, 300{\mu}m peak-to-peak)$ at selected frequencies (40-200Hz) on a commonly observed but often undesired motor response elicited bylocal vibratory stimulation, the Tonic Vibration Reflex (TVR). Second, to determine the degree of synchronization of motor unit (MU) activity with vibratory stimuli. Vibration was applied to the distal tendons of the hand flexor muscles. Changes in root- mean-square electromyographic (EMG) activity of the finger and wrist flexor muscles were analyzed both as a function of their initial contraction level (0%, 10%, 20% of the maximal voluntarycontraction: MVC) and as a function of the vibration parameters. The results indicate that the TVR increased with the initial muscle contraction up to 10% MVC: The TVR increased with vibration frequency up to 100-150 Hz and decreases beyond; A significant increase of the TVR with vibration displacement amplitude was observed only for the wrist flexor muscle; MU synchronization at vibration frequency (VF) was found more often in the low frequency range $(f{\leq}100 Hz)$ and tended todecrease beyond; In the high frequency range $(f{\geq}120 Hz)$, MU activity at subharmonic frequency was predominant; The "cut-off" frequency of the synchronization with VF was neither affected by the vibration displacement amplitude nor initial muscle contraction level. The surface EMG turned out to be a useful means to analyze MU synchronization since it is noninvasive, and it can be easily used for analysis of different muscle contraction levels, while single MU technique might have some difficulties at high muscle contraction levels. Furthermore, these results indicate that high frequencyvibration (f>150 Hz) tends to induce less muscle/tendon stress and MU synchronization. Such remarks are of importance for the design of hand-held vibrating tools.ing tools.

  • PDF

Effects of hand vibration on involuntary muscle contraction

  • 박희석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.394-398
    • /
    • 1994
  • The aim of the present study was to determine the influence of vibration frequency and muscle contraction level at constant vibration displacement amplitudes on a commonly observed motor response elicited by local vibratory stimulation, i.e., the Tonic Vibration Reflex (TVR). Vibration was applied to the distal tendons of the hand flexor muscles. Changes in activity of the hand flexor and extensor muscles were analyzed as a function of the vibration frequency (40-200 Hz), displacement amplitude(200.mu.m and 300.mu.m peak-to-peak), and the initial contraction level of the flexor muscles (0%, 10%, and 20% of the maximal voluntary contraction: MVC). The main results indicate that the TVR increases with vibration frequency up to 100-150 Hz and decreases beyond, and the TVR attains its maximum at 10% MVC. It appears that high frequency vibration tends to induce less muscle/tendon stress. Such a result is of particular importance for the design of handheld vibrating tools.

Relation of Ethanol and Calcium to Contractile and Electrical Activity of Cat Stomach (고양이 위(胃)의 수축 및 전기활동에 대한 에탄올과 칼슘의 관계)

  • Kim, Myung-Suk;Sim, Sang-Soo;Yoon, Shin-Hee;Han, Sang-Jun;Kim, Chung-Chin;Choi, Hyun
    • The Korean Journal of Physiology
    • /
    • v.21 no.2
    • /
    • pp.259-272
    • /
    • 1987
  • This was study carried out to investigate the effect of calcium on spontaneous contraction and electrical activity induced by ethanol in gastric smooth muscle. After peeling off the mucous membrane from the isolated whole stomach of 102 cats, two kinds of small muscle preparations $(2.0{\times}0.2\;cm)$, one longitudinal and the other circular, were excised from the fundus, the corpus and the antrum portion of each whole stomach specimen. The isometric contraction of the small muscle preparation was measured in a cylinder-shaped chamber filled with Krebs-Ringer-dextrose solution (pH 7.4, temperature $36{\pm}0.5^{\circ}C$) bubbling with 5% $CO_2$ in $O_2$. A large muscle preparation $(5.0{\times}1.2\;cm)$ was excised from the anterior wall of the corpus-antrum portion of the same specimen in 72 of 102 cats. The gastric electrical activity (slow wave and spike potential) was monopolarly recorded by four capillary electrodes (Ag-AgCl), of which two were placed on the corpus and two on the antrum, in a muscle chamber filled with the same solution as described above. Changes in the amplitude of the contraction, frequency of the gastric slow wave and the production of the spike potential were observed after adding ethanol and/or under the treatments with verapamil, $CaCl_2$ and Ca-free Krebs-Ringer-dextrose solution. The results were as follows: 1) After adding ethanol, the spontaneous phasic contraction of the corpus was reduced dose-dependently (0.125-2.0%), which was totally abolished by higher concentrations (2.0-8.0%) of ethanol. 2) The corporal phasic contraction was also completely abolished by verapamil $(3{\times}10^{-5}\;M)$ or Ca-free Krebs-Ringer-dextrose solution. The contraction was increased by $CaCl_2\;(1.8{\times}10^{-3}\;M)$, but the inhibitory effect of ethanol on the contraction persisted even under the treatment with $CaCl_2$. 3) At higher concentrations, ethanol caused tonic contraction of both preparations from the fundus, the corpus and the antrum in a dose-dependent manner. The tonic contraction of the fundus produced by ethanol was not influenced by $CaCl_2$ or verapamil, whereas the tonic contraction was not produced by ethanol in tile Ca-free solution. 4) Frequency of gastric slow wave was decreased dose-dependently by the addition of ethanol (0.25-1.0%), and tile slow wave was not produced by higher concentration of ethanol (2.0%). 5) The frequency of slow wave was significantly reduced by verapamil only and the inhibitory influence of ethanol on the slow wave frequency was reinforced by verapamil. 6) The treatment of $CaCl_2$ increased significantly the slow wave frequency, and attenuated the inhibitory effect of ethanol on the frequency. It is therefore suggested that ethanol regulates the phasic contraction and the production of slow wave by interfering with the transport of calcium in the stomach muscle of the cat.

  • PDF

Contractile Action of Barium in the Rabbit Renal Artery (가토 신동맥 평활근에서 Barium의 수축작용)

  • Jeon, Byeong-Hwa;Kim, Sahng-Seop;Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.293-303
    • /
    • 1990
  • The contractile action of barium $(Ba^{2+})$ was investigated in the arterial strip of rabbit renal artery. The helical strip of isolated renal artery was immersed in the Tris-buffered Tyrode's solution equilibrated with 100% $O_2$ at $37^{\circ}C$ and its isometric tension was measured. $Ba^{2+}-induced$ contraction of arterial strip was dose-dependent and its maximal tension corresponded to $92.1{\pm}4.5%$ of tension by $K^+(100\;mM)$. $Ba^{2+}-induced$ contraction did not show the tachyphylactic phenomenon in the normal Tyrode's solution. $Ba^{2+}$ induced the tonic contraction in the $Ca^{2+}-free$ tyrode's solution and that was increased by the extracellula addition of $Ca^{2+}$. During the repeated exposure of the same dose of $Ba^{2+}\;(10\;mM)$ in the $Ca^{2+}-free$ Tyrode's solution, $Ba^{2+}-induced$ contraction was progressively decreased. Even though the intracellular NE-and caffeine-sensitive $Ca^{2+}$ was depleted, $Ba^{2+}$ induced the tonic contraction. After the pretreatment of lanthnum or verapamil, $Ba^{2+}$ did not induce contraction. $Ba^{2+}-induced$contraction was suppressed by extracellular $K^+$ in the normal Tyrode's solution and that was dependent on $K^+$ concentration. Suppressive effect of $K^+\;(14\;mM)$ on the $Ba^{2+}-induced$ contraction was also dependent on the intracellular $Ca^{2+}$ concentration. From the above resuts, it is suggested that $Ba^{2+}$ activate indirectly the contractile process by promoting the mobilization of intracellular $Ca^{2+}$ and the influx of extracellular $Ca^{2+}$. It is also suggested that action of $Ba^{2+}$ on the $Ca^{2+}-activated$ $K^+$ channel can result in the depolarization of cell membrane in the rabbit renal artery.

  • PDF

Regional Differences in Voltage-tension Relationship of Gastric Smooth Muscles in Guinea-pig (위 평활근의 부위별 전압-장력 관계에 관한 연구)

  • Kim, Ki-Whan;Lee, Sang-Jin;Suh, Suk-Hyo
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.263-275
    • /
    • 1989
  • Mechanical contractions and electrical activities of the fundic longitudinal and antral circular muscle fibers were investigated in order to elucidate topical differences of gastric motility. K-induced contracture was produced by exposure of muscle strips to high K Tyrode solution. Membrane potential and mechanical contraction were simultaneously recorded by conventional glass microelectrode method and single sucrose-gap technique. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%\;O_2\;and\;kept\;35^{\circ}C$. The results obtained were as follows: 1) The resting membrane potential of circular muscle cells in the antral region was about 10 mV more negative than that in the fundic region. 2) The membrane potentials decreased almost linearly as the extracellular KCI concentration was increased both in antral circular muscle cells and in fundic longitudinal muscle cells. 3) The thresholdal K concentration of K-contracture was 15 mM (membrane potential, -48 mV) for the antral circular muscle strip and 20 mM for the fundic longitudinal muscle cells. 4) The ratio of membrane permeability coefficient for $Na^+\;and\;K^+,\;P_{Na}/P_K\;({\alpha})$ was 0.065 for antral circular muscle cells and was 0.108 for fundic longitudinal muscle cells. 5) K-contracture of antral and fundic smooth muscle strips showed the contracture composed of phasic and tonic components. The amplitude of the phasic component increased sigmoidally in a dose-dependent manner, whereas that of the tonic component was maximal at a concentration of 40 mM KCI and at the concentrations above or below 40 mM KCI the amplitude was reduced. 6) The inverse relationship between the amplitude of tonic component and extracellular KCI concentration in the range of 40 to 150 mM KCI was more prominent in the antral circular muscle strip than in the fundic longitudinal muscle strip, where the amplitude of the tonic component decreased less steeply and was maintained higher at the same high K concentrations. 7) The tonic component was totally dependent on the external $Ca^{2+}$ and completely abolished by verapamil, while tile phasic component was far less dependent on the external $Ca^{2+}$ and partially suppressed by verapamil. From the above results, the following conclusions could be made. 1) The phasic component of K-contracture is produced both by intracellular $Ca^{2+}$ mobilization and by $Ca^{2+}$-influx from outside, while the tonic component is generated and maintained by the $Ca^{2+}-influx$ through the potential-dependent $Ca^{2+}$ channel. 2) The mechanism of reducing the free $Ca^{2+}$ concentration in the myoplasm seems to be more developed in the antral circular muscle than in the fundic longitudinal muscle. 3) The lower resting membrane potential of the fundic longitudinal muscle cell reflects a relatively high $P_{Na}/P_K$ ratio of about 0.108.

  • PDF

$H_2$ Receptor-Mediated Relaxation of Circular Smooth Muscle in Human Gastric Corpus: the Role of Nitric Oxide (NO)

  • Lee, Sang Eok;Kim, Dae Hoon;Kim, Young Chul;Han, Joung-Ho;Choi, Woong;Kim, Chan Hyung;Jeong, Hye Won;Park, Seon-Mee;Yun, Sei Jin;Choi, Song-Yi;Sung, Rohyun;Kim, Young Ho;Yoo, Ra Young;Park, Hee Sun;Kim, Heon;Song, Young-Jin;Xu, Wen-Xie;Yun, Hyo-Yung;Lee, Sang Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.425-430
    • /
    • 2014
  • This study was designed to examine the effects of histamine on gastric motility and its specific receptor in the circular smooth muscle of the human gastric corpus. Histamine mainly produced tonic relaxation in a concentration-dependent and reversible manner, although histamine enhanced contractility in a minor portion of tissues tested. Histamine-induced tonic relaxation was nerve-insensitive because pretreatment with nerve blockers cocktail (NBC) did not inhibit relaxation. Additionally, $K^+$ channel blockers, such as tetraethylammonium (TEA), apamin (APA), and glibenclamide (Glib), had no effect. However, $N^G$-nitro-L-arginine methyl ester (L-NAME) and 1H-(1,2,4)oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), did inhibit histamine-induced tonic relaxation. In particular, histamine-induced tonic relaxation was converted to tonic contraction by pretreatment with L-NAME. Ranitidine, the $H_2$ receptor blocker, inhibited histamine-induced tonic relaxation. These findings suggest that histamine produced relaxation in circular smooth muscle of human gastric smooth muscle through $H_2$ receptor and NO/sGC pathways.

Effects of Octreotide on the Contractility of Isolated Rat Vas Deferens (흰쥐 정관의 수축성에 미치는 Octreotide의 영향)

  • Jang, Sun-Ae;Kwon, Oh-Cheol;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.1
    • /
    • pp.144-156
    • /
    • 1993
  • This study was performed to investigate the effect of octreotide on the contractility of rat vas deferens. The smooth muscle strips isolated from the prostatic portion were myographied in isolated organ bath, Electric field stimulation (monophasic square wave, duration: 1 mSec, voltage : 50 V, frequency : 5 Hz or 30 Hz, train: 10 Sec) produced reproducible contraction. The contraction was composed of two component, first phasic component (FPC) and second tonic component (STC). These contractions were abolished by tetrodotoxin ($1{\mu}M$). Octreotide inhibited the field stimulation induced contractions both FPC and STC concentration-dependently. The FPC was decreased by a desentization of purinergic receptor by pretreatment of mATP, and the STC was decreased by pretreatment of reserpine(3 mg/kg, IP) 24 hours before experiments. Octreotide reduced the field stimulation induced contraction in the presence of mATP and of reserpinized muscle strips. The inhibitory effect of octreotide was more potent at 5 Hz than at 30 Hz. Octreotide did not affect basal ton and exogenous norepinephrine- or ATP-induced contraction. These results suggest that octreotide inhibit the contractility of the isolated rat vas deferens by inhibition of the release of neurotransmitters, both ATP and norepinephrine from adrenergic nerve terminal.

  • PDF

Nitric Oxide-mediated Relaxation by High $K^+$ in Human Gastric Longitudinal Smooth Muscle

  • Kim, Young-Chul;Choi, Woong;Yun, Hyo-Young;Sung, Ro-Hyun;Yoo, Ra-Young;Park, Seon-Mee;Yun, Sei-Jin;Kim, Mi-Jung;Song, Young-Jin;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.405-413
    • /
    • 2011
  • This study was designed to elucidate high-$K^+$ induced response of circular and longitudinal smooth muscle from human gastric corpus using isometric contraction. Contraction from circular and longitudinal muscle stripes of gastric corpus greater curvature and lesser curvature were compared. Circular smooth muscle from corpus greater curvature showed high $K^+$ (50 mM)-induced tonic contraction. On the contrary, however, longitudinal smooth muscle strips showed high $K^+$ (50 mM)-induced sustained relaxation. To find out the reason for the discrepancy we tested several relaxation mechanisms. Protein kinase blockers like KT5720, PKA inhibitor, and KT5823, PKG inhibitor, did not affect high $K^+$-induced relaxation. $K^+$ channel blockers like tetraethylammonium (TEA), apamin (APA), glibenclamide (Glib) and barium ($Ba^{2+}$) also had no effect. However, N(G)-nitro-L-arginine (L-NNA) and 1H-(1,2,4) oxadiazolo (4,3-A) quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC) and 4-AP (4-aminopyridine), voltage-dependent $K^+$ channel (KV) blocker, inhibited high $K^+$ -induced relaxation, hence reversing to tonic contraction. High $K^+$-induced relaxation was observed in gastric corpus of human stomach, but only in the longitudinal muscles from greater curvature not lesser curvature. L-NNA, ODQ and KV channel blocker sensitive high $K^+$-induced relaxation in longitudinal muscle of higher portion of corpus was also observed. These results suggest that longitudinal smooth muscle from greater curvature of gastric corpus produced high $K^+$-induced relaxation which was activated by NO/sGC pathway and by $K_V$ channel dependent mechanism.

The Effects of Magnoliae officinalis Cortex and Machili thunbergii Cortex on Small Intestinal Motility (후박(厚朴)과 토후박(土厚朴)의 소장운동에 미치는 영향에 대한 연구)

  • Lee, Kyung-Jin;Park, Geun-Yong;Park, Gyu-Ha;Liu, Kwang-Hyeon;Kim, Tae-Wan;Ham, In-Hye;Bu, Young-Min;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.75-81
    • /
    • 2011
  • Objectives : Magnoliae officinalis Cortex (MOC) has been used in traditional medicine for digestive diseases in Korea, China and Japan. However, Machili thunbergii Cortex (MTC) also has been used as a substitute of MOC in Korea sometimes. Thus, this study was carried out to investigate and compare the effects of MOC and MTC on intestinal motility of isolated small intestinal segments from ICR mouse. Methods : Changes in motility were recorded via isometric transducers connected to a data acquisition system and amplitude, frequency and area under the curve (AUC) of intestinal spontaneous phasic contraction were compared. Results : The MOC extracts ($1{\sim}{\mu}g/mL$) dose-dependently decreased both amplitudes and frequencies of the spontaneous phasic contraction, but not AUC. However, high concentration of MOC (100 ${\mu}g$/mL) evoked tonic contraction. And it was not inhibited by tetrodotoxin, a sodium channel blocker, and nifedipine, a L-type $Ca^{2+}$ channel antagonist. These results suggested that MOC (100 ${\mu}g$/mL)-induced tonic contraction is not mediated by nerve or L-type $Ca^{2+}$ channel. On the other hand, the MTC extracts dose-dependently inhibited amplitude and AUC, but not the frequency. Conclusions : Although both MOC and MTC affected intestinal motility, MOC is more effective on intestinal motility than MTC. And MOC has been used as a traditional medicine for a long time but not MTC. Thus, we suggested that MTC should not be used in Korea as a substitute of MOC and MOC might be useful traditional medicine for gastrointestinal disease. The mechanism of MOC is still remained to elucidate.

Intracellular $Ca^{2+}$ Movement in Contraction Induced by Carbachol and Oxytocin in Rat Myometrium (자궁평활근의 Carbachol 및 Oxytocin 수축에 있어서의 세포내 $Ca^{2+}$ 동원)

  • Kim, Bo-Kyung;Chung, Dong-Su;Kim, Yoon-Sun;Lee, Yoon-Ho;Yong, Jun-Hwan;Lee, Won-Chang;Ozaki, Hiroshi;Karaki, Hideaki;Lee, Sang-Mog
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.221-231
    • /
    • 1996
  • The properties of cytosolic $Ca^{2+}$ level$([Ca^{2+}]_i)$ movement of high KCl, carbachol and oxytocin were examined with myometrium isolated from non-pregnant rat(estrus cycle). High concentration of KCl$({\leq}23.3mM)$ induced rhythmic increases in $[Ca^{2+}]_i$ and muscle contraction. However, sustained $[Ca^{2+}]_i$ and contracion were obtained at higher KCl concentration $({\geq}30.3mM)$ The rhythmic and sustained contraction closely associated with changes in $[Ca^{2+}]_i$ induced by high KCl. Carbachol $(3{\sim}30{\mu}M$ generated rhythmic increases with tonic component in $[Ca^{2+}]_i$ and muscle contraction. Myometrial contraction stimulated by carbachol was also closely correlated with change in $[Ca^{2+}]_i$. And the $[Ca^{2+}]_i/contraction$ relationships were similar when muscle strips were stimulated by high KCl and carbachol. Maximal concentration of carbachol $(10{\mu}M)$ and oxytocin(100 nM) increased $[Ca^{2+}]_i$ and contraction which were slightly greater than that of high KCl in non-pregnant myometrium, respectively. However, the $[Ca^{2+}]_i$ and contraction were strongly inhibited by verapamil $(10{\mu}M)$, a 1-type $Ca^{2+}$ channel blocker, as in the case of high KCl. Additionally, although carbachol further increased $[Ca^{2+}]_i$ and contraction induced by high KCl, these changes also strongly inhibited by application of verapamil. These results suggest that uterotonic agents, carbachol and oxytocin, induced contraction by increase in $[Ca^{2+}]_i$ through $Ca^{2+}$ influx than by a regulation of $Ca^{2+}-sensitization$ in non-pregnant myometrium.

  • PDF