• 제목/요약/키워드: tonal element

검색결과 12건 처리시간 0.018초

학령전기 아동 발화 단어의 선율 특성 분석 (An Analysis of Tonal Characteristics in Pre-school Children's Word Utterance)

  • 이수연;정현주
    • 말소리와 음성과학
    • /
    • 제7권2호
    • /
    • pp.85-94
    • /
    • 2015
  • This study is to investigate the characteristic of tonal elements in word utterance of 30 pre-school children. For the analyses, 240 utterances of 4 syllable words were processed to extract acoustic values and then the data was transformed into tonal height in order to examine the contour. The results show that the mean pitch of a note is $C4{\frac{1}{2}}(271.17Hz)$ and high and low pitched notes are $C5{\frac{1}{2}}(452.57Hz)$ and $G{\sharp}3{\frac{1}{2}}(192.54Hz)$. The pitch patterns of the 4 syllables measured at the frication and aspiration portion are $E4{\frac{1}{2}}-F4-B3{\frac{1}{2}}-A3$ and F4-E4-B3-A3. The pitch patterns of consonant clusters are $B3{\frac{1}{2}}-D4-B3{\frac{1}{2}}-A3{\frac{1}{2}}$ and $A{\sharp}3{\frac{1}{2}}-C4-A3-D4{\frac{1}{2}}$. The analyses of tonal elements in this study provide evidentiary data on tonal height helpful for developing melodic contour.

The Phonology and Phonetics of the Stress Patterns of English Compounds and Noun Phrases

  • Lee, Joo-Kyeong
    • 음성과학
    • /
    • 제14권1호
    • /
    • pp.21-35
    • /
    • 2007
  • This paper attempts to investigate phonetic substances of the stress patterns of English compounds and noun phrases, showing that the theoretically derived stress structures are not consistent with the accentual patterns in real utterances. Even though it has been long claimed that compounds have the stress pattern [1 3] and that noun phrases, [2 1] as in Chomsky & Halle (1968), their difference has not been yet explored empirically or phonetically. I present a phonetic experiment conducted to see if there is any difference along the tonal contours, mostly focusing on their pitch accent distribution. 36 different compounds and 36 different noun phrases included in carrier sentences were examined, and they were varied in position within a sentence. Results showed that various accentual patterns were produced, and among them, [H* X] predominantly occurs in all three positions in both compounds and noun phrases, whereas the patterns [X H*] and [X X] appear relatively more frequently in final position than in initial and medial position. Furthermore, the pattern [Ac + No], in which the preceding element is pitch-accented with no accent on the following one, is the major stress pattern in both compounds and noun phrases and in all three sentence positions. This suggests that there seems to be no difference in accentual patterns between compounds and noun phrases, which is not consistent with the hypothesis. The results are interpreted as saying that the preceding element alone tends to be prominent with no accent following it both in compounds and noun phrases, and that therefore, theoretically speculated phonological claims are not always phonetically supported.

  • PDF

스마트 폼을 이용한 덕트 내부의 능동 소음 제어 (Active Noise Control in a Duct Using Smart Foam)

  • 김표재;강연준;조영만
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.422-427
    • /
    • 2001
  • In this paper is presented passive-active noise control in a duct using a ring-type smart foam. The ring-type smart foam is comprised of a PVDF film embedded in elastic noise control foam of lining shape. The embeddedPVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. By implementing an adaptive filtered-x LMS algorithm, experiments are performed to reduce both tonal and broadband noise in a duct with one end closed and the other end open.

  • PDF

환형 서마트 폼을 이용한 관 내부의 소음제어 (Noise Control in a Duct Using Ring-type Smart Foam)

  • 한제헌;김표재;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.426-430
    • /
    • 2001
  • Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A feedforward adaptive filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF

원형 덕트 내에서 스마트 폼을 이용한 능동 소음 제어 (Active Noise Control in a Circular Duct Using Smart Foam)

  • 한제헌;김표재;강연준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.641-645
    • /
    • 2001
  • In this paper, it is discussed that active noise control in a circular duct using smart foam. Firstly, it is demonstrated that the potential of the conventional smart foam, proposed by Fuller, for active noise control in a duct. Conventional smart foam is not applicable to active noise control in a duct having flow. Thus, this paper presents a ring-type smart foam as an alternative. The ring-type smart foam consists of polyurethane acoustic foam of lining shape and PVDF film embedded in the foam. The embedded PVDF element acts as an actuator to reduce noise at lower frequencies and the foam absorbs noise at higher frequencies. A filtered-x LMS controller is used to minimize the signal from the error microphone. Experiments are executed to reduce broadband and tonal noise.

  • PDF

Prosodic Phrasing and Focus in Korea

  • Baek, Judy Yoo-Kyung
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 1996년도 10월 학술대회지
    • /
    • pp.246-246
    • /
    • 1996
  • Purpose: Some of the properties of the prosodic phrasing and some acoustic and phonological effects of contrastive focus on the tonal pattern of Seoul Korean is explored based on a brief experiment of analyzing the fundamental frequency(=FO) contour of the speech of the author. Data Base and Analysis Procedures: The examples were chosen to contain mostly nasal and liquid consonants, since it is difficult to track down the formants in stops and fricatives during their corresponding consonantal intervals and stops may yield an effect of unwanted increase in the FO value due to their burst into the following vowel. All examples were recorded three times and the spectrum of the most stable repetition was generated, from which the FO contour of each sentence was obtained, the peaks with a value higher than 250Hz being interpreted as a high tone (=H). The result is then discussed within the prosodic hierarchy framework of Selkirk (1986) and compared with the tonal pattern of the Northern Kyungsang dialect of Korean reported in Kenstowicz & Sohn (1996). Prosodic Phrasing: In N.K. Korean, H never appears both on the object and on the verb in a neutral sentence, which indicates the object and the verb form a single Phonological Phrase ($={\phi}$), given that there is only one pitch peak for each $={\phi}$. However, Seoul Korean shows that both the object and the verb have H of their own, indicating that they are not contained in one $={\phi}$. This violates the Optimality constraint of Wrap-XP (=Enclose a lexical head and its arguments in one $={\phi}$), while N.K. Korean obeys the constraint by grouping a VP in a single $={\phi}$. This asymmetry can be resolved through a constraint that favors the separate grouping of each lexical category and is ranked higher than Wrap-XP in Seoul Korean but vice versa in N.K. Korean; $Align-x^{lex}$ (=Align the left edge of a lexical category with that of a $={\phi}$). (1) nuna-ka manll-ll mEk-nIn-ta ('sister-NOM garlic-ACC eat-PRES-DECL') a. (LLH) (LLH) (HLL) ----Seoul Korean b. (LLH) (LLL LHL) ----N.K. Korean Focus and Phrasing: Two major effects of contrastive focus on phonological phrasing are found in Seoul Korean: (a) the peak of an Intonatioanl Phrase (=IP) falls on the focused element; and (b) focus has the effect of deleting all the following prosodic structures. A focused element always attracts the peak of IP, showing an increase of approximately 30Hz compared with the peak of a non-focused IP. When a subject is focused, no H appears either on the object or on the verb and a focused object is never followed by a verb with H. The post-focus deletion of prosodic boundaries is forced through the interaction of StressFocus (=If F is a focus and DF is its semantic domain, the highest prominence in DF will be within F) and Rightmost-IP (=The peak of an IP projects from the rightmost $={\phi}$). First Stress-F requires the peak of IP to fall on the focused element. Then to avoid violating Rightmost-IP, all the boundaries after the focused element should delete, minimizing the number of $={\phi}$'s intervening from the right edge of IP. (2) (omitted) Conclusion: In general, there seems to be no direct alignment constraints between the syntactically focused element and the edge of $={\phi}$ determined in phonology; all the alignment effects come from a single requirement that the peak of IP projects from the rightmost $={\phi}$ as proposed in Truckenbrodt (1995).

  • PDF

시로코 홴의 공력소음 발생에 관한 수치적 연구 (A Numerical Study on the Generation of Aeroacoustic Sound from Sirocco Fans)

  • 전완호;백승조;김창준
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.42-47
    • /
    • 2002
  • Sirocco fans are widely used in HVAC and air conditioning systems, and the noise generated by these machines causes one of the most serious problems. In general, the sirocco fan noise is often dominated by tones at BPF(blade passage frequency) and broadband noise. However, only a few researches have been carried out on predicting the aeroacoustic noise because of the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a sirocco fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson\`s method is used to predict the acoustic source. Reasonable results are obtained not only fur the tonal noise but also far the amplitudes of the broadband noise. Acoustic pressure is proportional to (Ω)2.3, which is the similar value with the measured data.

웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측- (An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field-)

  • 이덕주;전완호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.

원심팬 볼루트 영역내 순음 소음원의 상대적 기여도 분석 (Analysis of Relative Contributions of Tonal Noise Sources in Volute Tongue Region of a Centrifugal Fan)

  • 허승;김대환;정철웅
    • 한국음향학회지
    • /
    • 제33권1호
    • /
    • pp.40-47
    • /
    • 2014
  • 원심팬 날개 깃에서 발생한 와류와 원심팬 볼루트 사이의 상호작용은 원심팬의 주요한 소음원으로 알려져 있다. 본 연구에서는 저소음 설계의 기초 자료로 활용하기 위하여 원심팬의 주요한 소음원 영역으로 고려되는 원심팬 볼루트 영역을 세분화하여 볼루트 영역내의 상대적 기여도를 분석한다. 주요한 소음원으로부터 방사되는 소음을 예측하기 위해 내부 음장용 복합 전산공력음향학(CAA, Computational Aero-Acoustics) 방법을 사용한다. 이 방법은 전산유체역학(CFD, Computational Fluid Dynamics)과 음향상사법(Acoustic Analogy), 그리고 경계요소법(BEM, Boundary Element Method)을 사용하여 원심팬 내부 유동장으로부터 방사한 소음을 원심팬 외부 음향장에서 예측하는 방법이다. 복합 CAA 방법을 이용한 원심팬 볼루트 영역내의 소음원의 상대적 기여도 분석은 컷-오프영역으로부터 출구영역보다 컷-오프영역으로부터 원심팬 스크롤영역이 전체 소음에 대한 기여도가 높고, 날개 깃의 쉬라우드 영역보다 허브 영역이 전체 소음에 대한 기여도가 높다는 것을 보여준다. 이러한 결과는 향후 저소음 원심팬 개발을 위한 유용한 자료로 활용될 것이다.

복합 CAA 방법과 FRPM 기법을 이용한 냉장고 얼음제조용 원심팬의 광대역 소음 예측 (Broadband Noise Prediction of the Ice-maker Centrifugal Fan in a Refrigerator Using Hybrid CAA Method and FRPM Technique)

  • 허승;김대환;정철웅
    • 한국음향학회지
    • /
    • 제31권6호
    • /
    • pp.391-398
    • /
    • 2012
  • 본 연구에서는 기존의 RANS(Reynolds Averaged Navier Stokes) 방정식을 이용하는 복합 CAA(Computational AeroAcoustics) 방법에 광대역 소음원 생성을 위한 FRPM(Fast Random Particle Mesh) 기법을 적용하여 원심팬 광대역 소음 예측을 수행하였다. 먼저, RANS 방정식을 이용하여 원심팬 주위의 유동장을 예측하여 주요한 소음원 영역을 추론하고, 추론된 소음원 영역에 FRPM 기법을 적용하여 통계적 특성을 만족하는 난류를 재생하였다. RANS 방정식으로부터 해석된 유동장과 FRPM 기법으로부터 재생된 유동장을 이용하여 합성한 유동장에 음향상사법(Acoustic Analogy)을 적용하여 원심팬의 소음원을 생성하였다. 생성된 원심팬의 소음원을 경계요소법(Boundary Element Method)으로 구현된 선형전파모델에 적용하여 원심팬의 광대역 소음을 예측하였다. 원심팬에 대한 소음 측정값과의 비교를 통하여 제안된 기법이 원심팬의 순음 소음 및 광대역 소음 예측에 효과적임을 확인하였다.