• Title/Summary/Keyword: ton Implantation

Search Result 3, Processing Time 0.018 seconds

Investigation of Planar Optical Waveguide Formed by MeV $He^{+}$ Ion-Implantation into NaEr(WO$_4$)$_2$ Crystal

  • Feng Chen;Wang, Xue-Lin;Wang, Ke-Ming;Cheng, Zhen-Xiang;Chen, Huan-Chu;Shen, Ding-Yu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.97-100
    • /
    • 2002
  • NaEr(WO$_4$)$_2$ is a new laser material. The planar optical waveguide was formed in NaEr(WO$_4$)$_2$ crystal by 2.6 MeV He$^{+}$ ion implantation at doses of 1.0-1.5 $\times$ 10$^{16}$ ions/cm$^2$ at room temperature. The effective refractive indices of the dark modes were measured using the prism coupling method. foul n modes and five TM modes were observed in the waveguide. The refractive index profiles were analyzed using the reflectivity calculation method (RCM). The influence of heat treatment at moderate temperature on the refractive index profiles of the waveguide was also investigated. We used the TRIM'98 (Transport of ton in Matter) code to simulate the damage profile in the NaEr(WO$_4$) crystal by 2.6 MeV He$^{+}$ion implantation which is helpful for a better understanding of the waveguide formation.ion.

  • PDF

Suppression of Macrostep Formation Using Damage Relaxation Process in Implanted SiC Wafer (SiC 웨이퍼의 이온 주입 손상 회복을 통한 Macrostep 형성 억제)

  • Song, G.H.;Kim, N.K.;Bahng, W.;Kim, S.C.;Seo, K.S.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.346-349
    • /
    • 2002
  • High Power and high dose ion implantation is essentially needed to make power MOSFET devices based on SiC wafers, because the diffusivities of the impurities such as Al, N, p, B in SiC crystal are very low. In addition, it is needed high temperature annealing for electrical activation of the implanted species. Due to the very high annealing temperature, the surface morphology after electrical activation annealing becomes very rough. We have found the different surface morphologies between implanted and unimplanted region. The unimplanted region showed smoother surface morphology It implies that the damage induced by high energy ion implantation affects the roughening mechanism. Some parts of Si-C bonding are broken in the damaged layer, s\ulcorner the surface migration and sublimation become easy. Therefore the macrostep formation will be promoted. N-type 4H-SiC wafers, which were Al ion implanted at acceleration energy ranged from 30kev to 360kev, were activated at 1600$^{\circ}C$ for 30min. The pre-activation annealing for damage relaxation was performed at 1100-1500$^{\circ}C$ for 30min. The surface morphologies of pre-activation annealed and activation annealed were characterized by atomic force microscopy(AFM).

  • PDF

The Effects of high Energy(1.5MeV) B+ ion Implantation and Initial Oxygen Concentration Upon Deep Level in CZ Silicon Wafer (고 에너지 (1.5 MeV) Boron 이온 주입과 초기 산소농도 조건이 깊은 준위에 미치는 영향에 관한 연구)

  • Song, Yeong-Min;Mun, Yeong-Hui;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • The effect of high energy B ion implantation and initial oxygen concentration upon defect formation and gettering of metallic impurities in Czochralski silicon wafer has been studied by applying DLTS( Deep Level Transient Spectroscopy), SIMS(Secondary ton Mass Spectroscopy), BMD (Bulk Micro-Defect) analysis and TEM(Transmission Electron Microscopy). DLTS results show the signal of the deep levels not only in as-implanted samples but also in low and high temperature annealed samples. Vacancy-related deep levels in as- implanted samples were changed to metallic impurities-related deep levels with increase of annealing temperature. In the case of high temperature anneal, by showing the lower deep level concentration with increase of initial oxygen concentration, high initial oxygen concentration seems to be more effective compared with the lower initial oxygen one.

  • PDF