• Title/Summary/Keyword: tolerant lines

Search Result 93, Processing Time 0.031 seconds

Inheritance of Tolerance of Maize Inbreds to Exserohilum turcicum in North Korea

  • Kim, Soon-Kwon;Lee, Duk-Kyu;Lee, Joon-Ho;Jeong, Jae-Bong;Nwe, Win-Win;Han, Hyoung-Jai;Lee, Kwang-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.2
    • /
    • pp.91-106
    • /
    • 2013
  • Exserohilum turcicum is considered serious destructive disease of maize (Zea mays L.) in North Korea. This study aimed to understand genetic inheritance and combining ability of newly bred lines of maize tolerant to E. turcicum by diallel crosses. Three diallel sets for two different ecological regions and one agronomic trait; eastern (E), northern (N) and stay green (SG) involving 29 inbred lines were tested in eight locations of 2000 and 2001. E. turcicum infections were under natural conditions, respectively. Lines used were selected for high yield potential in test crosses with good agronomic traits and tolerance to biotic and abiotic stresses. Selection for race specific high resistance to biotic stresses was avoided to select quantitatively inherited genes. Host plant responses to E. turcicum were rated on a scale of 1 (highly tolerant) to 9 (highly susceptible). Highly significant variations were recorded in all trials. General combining ability (GCA) mean square was roughly twice that of specific combining ability (SCA). The genotype (G) by environment (E) interaction was highly significant. The overall results of genetic studies in three diallel sets show that genetic control for inbred tolerance to E. turcicum is polygenic and quantitatively inherited. New inbreds; E-3, N-1 and SG-4 confer better tolerance to E. turcicum than the widely used inbreds; Mo17, and B73. Proper use of genetic information from this study shall increase of corn production under high E. turcicum infection in the Far Eastern Regions of Korea and China.

Salt-Responsive Genes in Salt Tolerant Rice Mutants Revealed through Microarray Analysis

  • Song, Jae Young;Kim, Dong Sub;Lee, Myung-Chul;Kang, Si-Yong;Kim, Jin-Baek;Lee, Kyung Jun;Yun, Song Joong
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • Transcriptional regulation in response to salt in mutant lines was investigated using oligonucleotide microarrays. In order to characterize the salt-responsive genes in rice, the expression profiles of transcripts that responded to salt-treatment were monitored using the microarrays. In the microarray analysis, among 37,299 reliable genes, 5,101, 2,758 and 2,277 genes were up-regulated by more than 2-fold using the salt treatment, while the numbers of down-regulated genes were 4,619, 3,234, and 1,878 in the WT, ST-495, and ST-532, respectively. From genotype changes induced by gamma ray mutagenesis, 3,345 and 2,397 genes were up-regulated, while 2,745 and 2,075 genes were down-regulated more than 2-fold in the two untreated mutants lines compared with untreated WT, respectively. A total of 3,108 and 2,731 genes were up-regulated more than 2-fold, while 3,987 and 3,660 genes were down-regulated by more than 2-fold in the salt treatment of the two mutants lines compared with the salt treated WT, respectively. The expressions of membrane transporter genes such as OsAKT1, OsKUP, and OsNAC increased more severely in ST-495 and ST-532 than in the WT. The expressions of the proline accumulation related genes such as OsP5CS and OsP5CR were also markedly increased in the salt tolerant mutants when compared to the WT plant.

Transcriptome Profiling Identifies Genes of Waterlogging-Tolerant and -Sensitive Rapeseeds Differentially Respond to Waterlogging Stress at the Flowering Stage

  • Ji-Eun Lee;Da-Hee An;Kwang-Soo Kim;Young-Lok Cha;Dong-Chil Chang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.229-229
    • /
    • 2022
  • Rapeseed is a crop that is waterlogging sensitive, and it is necessary to breed waterlogging tolerance varieties. Our study presents the comparative transcriptome changes in two rapeseed lines, i.e., waterlogging-tolerant (tJ8634-B-30,) and - sensitive ('EMS26') lines under control and waterlogging stress treatments at the flowering stage. RNA-sequencing analysis revealed 13,279 differentially expressed genes (DEGs) for 'J8634-B-30' and 8,682 DEGs for 'EMS26' under waterlogging stress condition compared to control. Among DEGs of 'J8634-B-30', 6,818 were up-regulated and 6,461 were down-regulated. On the other hand, among the DEGs of 'EMS26', the number of down-regulated genes (5,240) were higher than that of up-regulated genes (3,442). Gene ontology enrichment analysis showed that DEGs related to glucan metabolic, cell wall, and oxidoreductase activity were significantly changed in 'J8634-B-30'. Kyoto Encyclopedia of Genes and Genomes (KEGG)-based analysis in 'J8634-B-30' identified up-regulated DEGs being involved in MAPK signaling pathways. In addition, the DEGs belonging to mechanisms responding to waterlogging stress, i.e., plant hormones, carbon metabolism, Reactive oxygen species (ROS), Nitric oxide (NO) etc. were compared in rapeseed lines. Several DEGs including ethylene-responsive transcription factor (ERF), constitutive triple response (CTR) (in ethylene signaling pathway), monodehydroascorbate Reductase (MDAR), NADPH oxidase (in ROS pathway), cytochrome c oxidase assembly protein (COX) (in NO pathway) up-regulated in 'J8634-B-30'. These outcomes provided the valuable information for further exploring the genetic mechanism of waterlogging tolerance in rapeseed.

  • PDF

Evaluation of Salt Tolerance in Sorghum (Sorghum bicolor L.) Mutant Population

  • Ye-Jin Lee;Baul Yang;Woon Ji Kim;Juyoung Kim;Soon-Jae Kwon;Jae Hoon Kim;Joon-Woo Ahn;Sang Hoon Kim;Haeng-Hoon Kim;Chang-Hyu Bae;Jaihyunk Ryu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.38-38
    • /
    • 2023
  • Sorghum (Sorghum bicolor L.) is a promising biomass crop with a high lignocellulose content. This study aimed to select high salt-tolerance sorghum lines for cultivation on reclaimed land. Using 7-day seedlings of the sorghum population consisted of 71 radiation-derived mutants (M2 to M6) and 33 genetic resources, survival rate (SR), plant height (PH), root length (RL), fresh weight (FW), and chlorophyll content (CC) were measured for two weeks after 102 mM (0.6%) NaCl treatment. Furthermore, the characteristics of the sorghum population were confirmed using correlation analysis, PCA (principal component analysis), and the FCE (fuzzy comprehensive evaluation) method. Under 102 mM NaCl conditions, SR ranged from 4.9 (IS645-200-6) to 82.4% (KLSo79125-200-1), with an average of 49.9%. PH varied from 7.5 (Mesusu-100-2) to 33.2 cm (DINE-A-MITE-100-2-10), with an average of 20.4 cm. RL ranged from 1.0 (IS645-200-1) to 17.0 cm (30-100-2), with an average of 7.7 cm. FW varied from 0.1 (IS645-200-6) to 4.5 g/plant (DINE-A-MITE-100-2-10), with an average of 2.1 g/plant. CC ranged from 0.9 (DINE-A-MITE-100-2-2) to 3.1 mg/g (IS12937), with an average of 1.7 mg/g. An overall positive correlation, with SR and FW (r = 0.86, P < 0.01), and FW and CC (r = 0.79, P < 0.01), was shown by correlation analysis. Among the five traits, two principal components were extracted by PCA analysis. PC1 was significantly associated with FW, while PC2 was highly involved with RL. To evaluate the salt tolerance level of the sorghum population when an FCE based on trait data was performed, MFV (membership function value) was 0.68. As a result of compiling the MFV of each line, eight lines with MFV > 0.68 were selected. Ultimately, the radiation-derived mutant lines, DINE-A-MITE-100-2-10 and DINE-A-MITE-100-2-12 were selected as salt-tolerant sorghum lines. The results are expected to inform salt-tolerant sorghum breeding programs, and the high salt-tolerance sorghum lines might be advantageous for cultivation on reclaimed land.

  • PDF

Characterization of Salt Tolerant Rice Mutant Lines Derived from Azetidine-2-Carboxylic Acid Resistant Cell Lines Induced by Gamma Ray Irradiation (AZCA 저항성 돌연변이 세포주로부터 선발 육성만 내염성 벼 돌연변이 계통의 특성 검정)

  • Song, Jae-Young;Kim, Dong-Sub;Lee, Geung-Joo;Lee, In-Sok;Kang, Kwon-Kyoo;Yun, Song-Joong;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • To develop rice (Oryza sativa L.) cultivars to be planted on salt-affected sites, cell lines with enhanced proline content and resistance to growth inhibition by Azetidine-2-carboxylic acid (AZCA), a proline analogue, were screened out among calli irradiated with gamma ray of 50, 70, 90, and 120 Gy. The calli had been derived from embryo culture of the cultivar Donganbyeo. Selected AZCA resistant lines that had high proline accumulation were used as sources for selection of NaCl resistant lines. To determine an optimum concentration for selection of NaCl resistant lines, Donganbyeo seeds were initially cultured on the media containing various NaCl concentrations (0 to 2.5%) for 40 days, and 1.5% NaCl concentration was determined as the optimum concentration. One hundred sixteen salt-tolerant (ST) lines were selected from bulked 20,000 seeds of the AZCA resistant $M_{3}$ seeds in the medium containing 1.5% NaCl. The putative 33 lines ($M_{4}$ generation) considered with salt-tolerance were further analyzed for salt tolerance, amino acid and ion contents, and expression patterns of the salt tolerance-related genes. Out of the 33 lines, 7 lines were confirmed to have superior salt tolerance. Based on growth comparison of the entries, the selected mutant lines exhibited greater shoot length with average 1.5 times, root length with 1.3 times, root numbers with 1.1 times, and fresh weight with 1.5 times than control. Proline contents were increased maximum 20%, 100% and 20% in the leaf, seed and callus, respectively, of the selected lines. Compared to control, amino acid contents of the mutants were 24 to 29%, 49 to 143%, 32 to 60% higher in the leaf, seed and callus, respectively. The ratio of $Na^{+}/K^{+}$ for most of the ST-lines were lower than that of control, ranging from 1.0 to 3.8 for the leaf and 11.5 to 28.5 for the root, while the control had 3.5 and 32.9 in the leaf and root, respectively. The transcription patterns for the P5CS and NHXI genes observed by RT-PCR analysis indicated that these genes were actively expressed under salt stress. The selected mutants will be useful for the development of rice cultivar resistant to salt stress.

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Response of domestically collected Echinochloa species to cyhalofop-butyl and pyribenzoxim herbicides, their absorption and translocation (국내 피 수집종에 대한 cyhalofop-butyl과 pyribenzoxim의 약제반응 및 흡수이행)

  • Lee, In-Yong;Park, Jae-Eup;Park, Tae-Seon;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.2
    • /
    • pp.19-28
    • /
    • 1999
  • To investigate the physiological and biochemical differences between susceptible and tolerant species of Echinochloa species to the foliar applied cyhalofop-butyl and pyribenzoxim herbicides, herbicidal response, the rate of absorption, translocation and metabolism were studied. Among 148 individuals of Echinochloa species collected from 41 sampling sites in Korea which were classified into 7 geographical regions, based on morphological characteristics of plant and seed type, 46 lines were used for further studies. From them, E. crus-galli var. praticola collected from Hwanggan and E. crus-galli var. crus-galli collected from Namyangju were selected as the most susceptible species to cyhalofop-butyl and pyribenzoxim, respectively. Meanwhile, E. oryzicola(from Cheju) and E. crus-galli var. crus-galli(from Asan) were selected as tolerant species to cyhalofop-butyl and pyribenzoxim, respectively. Application of radio-labelled herbicides on the 1st leaf to both susceptible and tolerant Echinochloa species exhibited that the applied $^{14}C$-Cyhalofop-butyl and $^{14}C$-pyribenzoxim were more easily absorbed and translocated into stem tissues than root. Absorption of $^{14}C$-Cyhalofop-butyl increased rapidly at 1 h after application and reached the maximum at 12 h after application. However, the absorption rate of $^{14}C$-pyribenzoxim was not changed. Two metabolites from cyhalofop-butyl-treated plants and one metabolite from pyribenzoxim-treated plants were separated by TLC. The amount of metabolite 1 in cyhalofop-butyl-treated tolerant species was significantly higher than that in the susceptible one, suggesting differences in detoxification ability between susceptible and tolerant species.

  • PDF

Studies on the Screening for Cold Tolerance in Soybean (대두내냉성계통선발에 관한 연구)

  • Kwon, S.H.;Lee, Y.I.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.1
    • /
    • pp.32-35
    • /
    • 1978
  • In order to screen cold tolerant soybean lines, germination at various temperature, and emergence and seedling height at 1$0^{\circ}C$ were investigated. Since the most conspicuous varietal difference of the germination speed was observed at 1$0^{\circ}C$, the germination test at 1$0^{\circ}C$ would be effective in screening cold tolerant lines.

  • PDF

Screening of salt-tolerance plants using transgenic Arabidopsis that express a salt cress cDNA library (Salt cress 유전자의 형질전환을 통한 내염성 식물체 선별)

  • Baek, Dongwon;Choi, Wonkyun;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Kim, Chanmin;Park, Hyeong Cheol;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Salt cress (Thellungiella halophila or Thellungiella parvula), species closely related to Arabidopsis thaliana, represents an extremophile adapted to harsh saline environments. To isolate salt-tolerance genes from this species, we constructed a cDNA library from roots and leaves of salt cress plants treated with 200 mM NaCl. This cDNA library was subsequently shuttled into the destination binary vector [driven by the cauliflower mosaic virus (CaMV) 35S promoter] designed for plant transformation and expression via recombination- assisted cloning. In total, 305,400 pools of transgenic BASTA-resistant lines were generated in Arabidopsis using either T. halophila or T. parvula cDNA libraries. These were used for functional screening of genes involved in salt tolerance. Among these pools, 168,500 pools were used for primary screening to date from which 7,157 lines showed apparent salt tolerant-phenotypes in the initial screen. A secondary screen has now identified 165 salt tolerant transgenic lines using 1,551 (10.6%) lines that emerged in the first screen. The prevalent phenotype in these lines includes accelerated seed germination often accompanied by faster root growth compared to WT Arabidopsis under salt stress condition. In addition, other lines showed non-typical development of stems and flowers compared to WT Arabidopsis. Based on the close relationship of the tolerant species to the target species we suggest this approach as an appropriate method for the large-scale identification of salt tolerance genes from salt cress.