• Title/Summary/Keyword: tolerance or resistance

Search Result 171, Processing Time 0.03 seconds

Tolerance: An Ideal Co-Survival Crop Breeding System of Pest and Host in Nature with Reference to Maize

  • Kim, Soon-Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.1
    • /
    • pp.59-70
    • /
    • 2000
  • In nature, plant diseases, insects and parasites (hereafter called as "pest") must be co-survived. The most common expression of co-survival of a host crop to the pest can be tolerance. With tolerance, chemical uses can be minimized and it protects environment and sustains host productivity and the minimum pest survival. Tolerance can be applicable in all living organisms including crop plants, lifestocks and even human beings. Tolerant system controls pest about 90 to 95% (this pest control system often be called as horizontal or partial resistance), while the use of chemicals or selection of high resistance controls pest 100% (the most expression of this control system is vertical resistance or true resistance). Controlling or eliminating the pests by either chemicals or vertical resistance create new problems in nature and destroy the co-survial balance of pest and host. Controlling pests through tolerance can only permit co-survive of pests and hosts. Tolerance is durable and environmentally-friend. Crop cultivars based on tolerance system are different from those developed by genetically modified organism (GMO) system. The former stabilizes genetic balance of a pest and a host crop in nature while the latter destabilizes the genetic balance due to 100% control. For three decades, the author has implemented the tolerance system in breeding maize cultivars against various pests in both tropical and temperate environments. Parasitic weed Striga species known as the greatest biological problem in agriculture has even been controlled through this system. The final effect of the tolerance can be an integrated genetic pest management (IGPM) without any chemical uses and it makes co-survival of pests in nature.in nature.

  • PDF

Mode of Resistance and/or Tolerance Action of Paraquat (Paraquat 저항성(抵抗性) 및 내성(耐性) 발현(發現) 기구(機構))

  • Ma, Sang-Yong;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.373-385
    • /
    • 1994
  • Resistance to paraquat (1,1'-dimethyl-4,4'-bipyridilium ion) has developed in 12 species of 8 genera to which paraquat has been applied 6 to 10 times per year for 5 or more years. In recent years, tolerance to paraquat has been found in Rehmannia glutinosa (Gaertn.) Liboch. ex Fisch. & Mey. which has never been applied with any herbicides involving paraquat. In this review, we differentiate the terms, resistance and tolerance, on the basis of the paraquat-exposure history. Five hypotheses have been evaluated in several species as potential mechanisms of paraquat resistance and/or tolerance. In a species, the mode of action may be due to 1) reduced quantities of paraquat absorbed through the leaf surface, 2) detoxification of paraquat caused by the enhanced paraquat-metabolic activity, 3) rapid sequestration reducing level of paraquat at the site of action in chloroplast, 4) alteration of site of action in photosystem I resulting in interruption of electron transport to paraquat, and 5) rapid enzymatic detoxification of superoxide and other toxic forms of oxygen.

  • PDF

Investigation of Defense and Vegetative Growth Related Traits of Recombinant Inbred Lines of Brassica rapa

  • Kwon, Soon-Tae;Yeam, Inhwa;Shin, Jong Hwa
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.615-623
    • /
    • 2020
  • Brassica rapa is one of the most valuable vegetable crops worldwide. Cultivated varieties of B. rapa exhibit diverse developmental and morphological appearances, which includes important vegetables, oilseeds, and fodder crops. In this study, various phenotypes of recombinant inbred lines (RILs) of B. rapa were investigated, including their responses to five different pathogenic Botrytis cinerea isolates, responses to aphid and thrips during flowering stages, days to flowering, and plant heights. Responses of 113 RILs to five different B. cinerea isolates showed variations, suggesting that genetic factors controlling resistance or tolerance against each isolate were dependent on isolate/genotype pairs. Correlation analysis was performed to understand the nature of genetic factors and the relationship among these phenotypes. Although high levels of correlation were not detected between phenotypes assessed in this study, statistically significant correlation was detected for several combinations. Significant positive correlations were found for different B. cinerea isolates, supporting that certain levels of commonality could exist in genetic components controlling resistance against different B. cinerea isolates. Based on correlation analysis using numbers of insects counted on plants, it was speculated that genetic factors responsible for aphid tolerance or repellence might be also involved in the response against thrips. Relationship between vegetative growth and tolerance against B. cinereal or insects is rather more complicated. However, it was observed that shorter plants appeared to have a certain level of tolerance or repellence against both aphids and thrips. Data presented in this study could be used to assist further genetic studies and breeding efforts to obtain Botritis and insect resistance for B. rapa.

Evaluation of Root Characters Associated with Lodging Tolerance by Seedling Test in Rice

  • Si-Yong, Kang;Won-Ha, Yang;Hyun-Tak, Shin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.309-315
    • /
    • 1999
  • Rice seedling test was conducted to check the loging tolerance at ripening stage through evaluating the root characters. Thirteen Korean and foreign rice cultivars with direct seeding adaptable or high quality characteristics were grown in a cell pot and under submerged paddy. The root characters and pushing resistance of rice hill were determined at seedling and ripening stage, respectively. The diameter of crown root at the 7th and 8th leaf stages was thicker in lodging tolerance cultivars than those of others and showed significant-positive correlation with both pushing resistance and crown root diameter of mature plants. Also, the tensile strength of crown root at the 7th and 8th leaf stage showed highly positive correlation with the tensile strength of crown root of mature plants. The number of crown root at 7th leaf stage was significant-positively correlated with that of mature plant. The diameter of seminal root was not significantly correlated with the diameter of crown root throughout the whole growth stage. These results indicate that the diameter, tensile strength and number of crown root associated with root lodging tolerance can be detected with the seedling at about 7th or 8th leaf stage, and the seedling test using the cell pot is an useful and practical method to select lodging tolerant cultivars or lines of rice based on root characters, especially diameter of crown root.

  • PDF

Cross-Resistance to Toluene and Heat in Micrococus sp. BCNU 121 (Micrococcus sp. BCNU 121균주의 toluene과 열에 대한 교차내성)

  • 주우홍;한수지;최용락;정영기
    • Journal of Life Science
    • /
    • v.14 no.1
    • /
    • pp.188-192
    • /
    • 2004
  • Toluene tolerance and therrnotolerance in Crampositive organic solvent resistant bacterium Micrococcus sp. BCNU 121 has been studied. Exposure to a sub- lethal temperature or a sub-lethal concentration of toluene conferred protection to subsequent challenges with a killing temperature or a lethal concentration of toluene, respectively. Pretreatment of Micrococcus sp. BCNU 121 with sub-lethal concentrations of toluene induced adaptative protection against heat shock. Moreover, temperature-adaptative cells also showed cross-resistance to lethal doses of toluene. These data suggested a cross-regulation between toluene tolerance and heat shock response.

In vitro selection of lactic acid bacteria for probiotic use in pig (양돈용 생균제 균주개발을 위한 유산균주 선발)

  • Ryu, Ji-Sook;Han, Sun-Kyung;Shin, Myeong-Soo;Lee, Wan-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.32 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • In order to develop probiotic strain for pigs, Lactobacillus spp. (527 isolates), Streptococcus spp. (95 isolates) and Bifidobacterium spp. (25 isolates) were isolated from the feces of 35 pigs. These isolates were tested through in vitro experiment such as acid tolerance at pH 2.0 (Lactobacillus spp. and Streptococcus spp.) or pH 3.0 (Bifidobacterium spp.), bile tolerance in MRS broth containing 0.3% (w/v) Oxgall, heat resistance at $70^{\circ}C$ and $80^{\circ}C$ for 5 min, antibiotic resistance, antimicrobial activity against pathogenic bacteria and Caco-2 cell adherence assay. Finally ten most superior strain (5 Lactobacillus spp. strain, 3 Bifidobacterium spp. strain and 2 Streptococcus spp. strain) were selected as potential candidate for probiotic use in pig industry. It could be used as an alternative to antibiotics in feed additives.

The Effect of NaCI Treatment on the Freezing Tolerance and Protein Patterns of Carrot Callus Suspension Culture

  • Moon, Soon-Ok;Park, Sook-Hee;Cho, Bong-Heuy
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.21-25
    • /
    • 1997
  • The growth. freezing resistance and electrophoretic protein patterns of carrot callus cultures were investigated following treatment with NaCl for various' intervals at 20$^{\circ}C$. Following 7 day exposure to 250 mM NaCl. freezing tolerance increased, which was measured by 2.3.5-triphenyl tetrazolium chloride (TTC) assay and fresh weight was reduced compared to control cells. Changes of electrophoretic patterns of total and boiling stable proteins were investigated using one or two dimensional gel system. Several proteins with molecular weight of 43 and 21 kDa increased by NaCl treatment. The most prominent change was detected in 21 kDa protein. The steady state level of this protein increased in NaCl treated cells, but decreased in control cells. Twenty one kDa protein was detected only in the NaCl treated cell when boiling stable protein was analyzed. The isoelectric point of 21 kDa protein was identified as 5.7. The timing of increase of 21 kDa protein was correlated to freezing resistance which implied the role of this protein in the induction of freezing resistance of the cell.

  • PDF

Resistance of Plants to Herbicide (제초제(除草劑)에 대한 식물(植物)의 저항성(抵抗性))

  • Kim, Kil-Ung
    • Korean Journal of Weed Science
    • /
    • v.4 no.1
    • /
    • pp.96-106
    • /
    • 1984
  • Changes in weed floras and development of plant resistance to herbicides seemed to be closely related with increased and repeated use of herbicides. Herbicide use increased from 5% of the total consumption of pesticide in 1950 to 45% in 1976 in world basis. About 200 herbicides have been introduced to agriculture so as to control about 206 weed species which have been recorded important to human beings. In Korea, there was about 351 times in increased use of herbicides from 1966 to 1982. Interspecific selection by herbicide is mainly responsible for changes in weed floras and resulted in varying tolerance or susceptibility to herbicides, together with the changes of agricultural practices. The present trend toward continuous cereal cultivation throughout world will lead to type of changes in weed floras favorable to therophyte which can survive under unfavorable conditions as seeds rather than the types of geophyte which can survive unfavorable seasons as buds placed below soil surface. However, geophyte such as Sagitaria pygmaea, and Scirpus jurtcoides, and Cyperus rotundus and Cynodon dactylon in temperate warm climate become severe paddy weeds, presumably because of the removal of annual weeds by herbicides. Since differential tolerance to 2,4-D was firstly reported in Agrostis stolofera, about 30 species of weeds in 18 genera are presently known to have developed resistance to triazine herbicides. Resistance of weed biotypes to triazine herbicide is not mainly due to limited absorption and translocation or to the difference in metabolism, but is the result of biochemical changes at the site of metabolic activity, such as a loss of herbicide affinity for triazine binding site in the photosystem II complex of the chloroplast membrane. Genetical study showed that plastid resistance to triazine was wholly inherited through cytoplasmic DNA in the case of Brassica campestris. Plant tissue culture method can be utilized as an alternate mean of herbicide screening and development of resistance variants to herbicides as suggested by Chaleff and Parsons. In this purpose, one should be certain that the primary target process is operational in cell culture. Further, there are a variety of obstacles in doing this type of research, particularly development of resistance source and it's regeneration because cultured cells and whole plants represent different developmental state.

  • PDF

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.

Finger temperature Response According to Daily Life of Female College Student (여대생의 생활 습관에 따른 국소한랭혈관 반응)

  • Kim, Yang-Weon;Song, Eun-Young
    • Korean Journal of Human Ecology
    • /
    • v.20 no.1
    • /
    • pp.195-203
    • /
    • 2011
  • The purpose of this study was to define the effects of the finger temperature response according to the daily life of college student. For this study, 31 healthy female college students were taken as a subject group. To define the effects of the finger temperature response, housing style, subjective thermal sensations during daily life in the house and domestic working time were surveyed. The finger temperature response items were measured. The results were as follows. Strong, normal and weak group members were divided according to their cold resistance index(RI) 3, 8, 20 people, repectively. Subjective thermal sensations during daily life in the house affects the cold resistance index(p<.01). The cold resistance index(RI) got higher as domestic working time was increased(p<.05, F-value=3.927). The percentage wearing protective gloves during domestic work in the weak group was higher than the normal or strong groups. Subjective sensations during daily life and domestic working time effected the local cold tolerance, living in a comfortable environment continuously can weaken one's cold tolerance.