• 제목/요약/키워드: tolerance angle

검색결과 107건 처리시간 0.028초

다구찌 방법을 이용한 신발 아웃솔 펠레타이징 기계 절단부의 강건설계 (Taguchi-based robust design for the footwear outsole pelletizing machine cutter)

  • 권오훈;구평회;권혁무
    • 품질경영학회지
    • /
    • 제44권4호
    • /
    • pp.935-949
    • /
    • 2016
  • Purpose: This study attempts to find out the optimum condition of the rotary cutter making pellet in the footwear outsole process. The pellets are used in the process of outsole rubber fabrication to reduce cycle time and save raw material. Methods: Computer simulations are used to analyze the maximum stress in the rotary cutter after designing a variety of cutter shapes. Taguchi method is used to identify the robust condition of the cutter. In $L_{18}$ orthogonal array, the control factors such as knife width, twisted angle, number of knives, diameter, knife depth and supported angle are considered and noise factors like assembly tolerance and amount of antifriction are allocated. Results: It is found that the most important factors to reduce maximum stress in the cutter are supported angle and diameter. Using Tacuchi's results, we can reduce 70% cycle time and 9% raw material compared to the traditional method using cutting die. Conclusion: When designing the rotary cutter, the best conditions are the diameter at its maximum allowable value and supported angle in the boundary of machine inner space.

Adaptive Variable Angle Control in Switched Reluctance Motor Drives for Electric Vehicle Applications

  • Cheng, He;Chen, Hao;Xu, Shaohui;Yang, Shunyao
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1512-1522
    • /
    • 2017
  • Switched reluctance motor (SRM) is suitable for electric vehicle (EV) applications with the advantages of simple structure, good overload capability, and inherent fault-tolerance performance. The SRM dynamic simulation model is built based on torque, voltage, and flux linkage equations. The EV model is built on the basis of the analysis of forces acting on a vehicle. The entire speed range of the SRM drive is then divided into constant torque and constant power areas. The command torque of the motor drive system is given according to the accelerator pedal coefficient and motor operation areas. A novel adaptive variable angle control is proposed to avoid the switching chattering between the current chopping control and angle position control modes in SRM drives for EV applications. Finally, simulation analysis and experimental results are conducted to verify the accuracy of the proposed simulation model and control strategy.

횡 방향 플립 칩 초음파 접합 시 혼의 공차변수가 시스템의 진동에 미치는 영향 (Effect of the Tolerance Parameters of the Horn on the Vibration of the Thermosonic Transverse Bonding Flip Chip System)

  • 정하규;권원태;윤병옥
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.116-121
    • /
    • 2009
  • Thermosonic flip chip bonding is an important technology for the electronic packaging due to its simplicity, cost effectiveness and clean and dry process. Mechanical properties of the horn and the shank, such as the natural frequency and the amplitude, have a great effect on the bonding capability of the transverse flip chip bonding system. In this research, two kinds of study are performed. The first is the new design of the clamp and the second is the effect of tolerance parameters to the performance of the system. The clamp with a bent shape is newly designed to hold the nodal point of the flip chip. The second is the effect of the design parameters on the vibration amplitude and planarity at the end of the shank. The variation of the tolerance parameters changes the amplitude and the frequency of the vibration of the shank. They, in turn, have an effect on the quantity of the plastic deformation of the gold ball bump, which determined the quality of the flip chip bonding. The tolerance parameters that give the great effect on the amplitude of the shank are determined using Taguchi's method. Error of set-up angle, the length and diameter of horn and error of the length of the shank are determined to be the parameters that have peat effect on the amplitude of the system.

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.

Electro-Optical and Switching Behavior of In-plane Switching Twisted Nematic Liquid Crystal Display

  • Kimura, Munehiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.1092-1095
    • /
    • 2003
  • A driving mechanism and excellent features for an in-plane switching twisted nematic liquid crystal mode (IT mode) that could possibly improve the viewing-angle and color shift characteristics and the cell gap error tolerance is proposed. .It is important that the surface azimuthal anchoring strength of the liquid crystal cell differs at the upper and lower substrates. Furthermore. as a rubbing-free LCD. amorphously aligned in-plane switching twisted nematic mode (a-IT mode) is also demonstrated.

  • PDF

QUALITY IMPROVEMENT OF VEHICLE DRIFT USING STATISTICAL SIX SIGMA TOOLS

  • PARK T. W.;SOHN H. S.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.625-633
    • /
    • 2005
  • Vehicle drift was reduced using statistical six sigma tools. The study was performed through four steps: M (measure), A (analyze), I (improve), and C (control). Step M measured the main factors which were derived from a fishbone diagram. The measurement system capabilities were analyzed and improved before measurement. Step A analyzed critical problems by examining the process capability and control chart derived from the measured values. Step I analyzed the influence of the main factors on vehicle drift using DOE (design of experiment) to derive the CTQ (critical to quality). The tire conicity and toe angle difference proved to be CTQ. This information enabled the manufacturing process related with the CTQ to be improved. The respective toe angle tolerance for the adjustment process was obtained using the Monte Carlo simulation. Step C verified and controlled the improved results through hypothesis testing and Monte Carlo simulation.

Optical Compensation in a Vertical Alignment Liquid Crystal Cell for Elimination of the Off-Axis Light Leakage

  • Ji, Seung-Hoon;Choi, Jung-Min;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1580-1583
    • /
    • 2008
  • We propose an optical configuration for a vertical alignment (VA) liquid crystal (LC) cell to eliminate the off-axis light leakage in the dark state. The proposed compensation configuration consists of a positive A-film, a positive C-film and a negative C-film. The optical design is performed on a Poincar$\acute{e}$ sphere. This configuration has a better tolerance to the wavelength dispersion, as the polarization trace could self-compensate it. From calculations, we show that the proposed VA LC cell can improve the viewing angle characteristics by compensating for the light leakage in the diagonal direction.

  • PDF

데오도라이트를 이용한 위성체 얼라인먼트 측정에 관한 연구 (A Study on Spacecraft Alignment Measurement with Theodolite)

  • 윤용식;이동주
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.64-70
    • /
    • 2003
  • A measurement of spacecraft alignment is an important process of spacecraft assembly, integration and test because it is necessary that a ground station controls the precise positions of on-orbit spacecraft by using the alignment data of attitude orbit control sensors(AOCS) on spacecraft. In addition, accuracy of spacecraft alignment requirement is about $0.1^{\circ}$~$0.7^{\circ}$. The spacecraft alignment is measured by autocollimation of theodolite. This paper describes the measurement principle and method of spacecraft alignment. The result shows that all of the AOCS on the spacecraft are aligned within the tolerance required through the alignment measurement.

Optimization of Tilted Bragg Grating Tunable Filters Based on Polymeric Optical Waveguides

  • Park, Tae-Hyun;Huang, Guanghao;Kim, Eon-Tae;Oh, Min-Cheol
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.214-220
    • /
    • 2017
  • A wavelength filter based on a polymer Bragg reflector has received much attention due to its simple structure and wide tuning range. Tilted Bragg gratings and asymmetric Y-branches are integrated to extract the reflected optical signals in different directions. To optimize device performance, design procedures are thoroughly considered and various design parameters are applied to fabricated devices. An asymmetric Y-branch with an angle of $0.3^{\circ}$ produced crosstalk less than -25 dB, and the even-odd mode coupling was optimized for a grating tilt angle of $2.5^{\circ}$, which closely followed the design results. Through this experiment, it was confirmed that this device has a large manufacturing tolerance, which is important for mass production of this optical device.

Mechanical Error Analysis of Disk Cam Mechanisms with a Flat-Faced Follower

  • Chang Wen-Tung;Wu Long-Iong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.345-357
    • /
    • 2006
  • By employing the concept of equivalent linkage, this paper presents an analytical method for analyzing the mechanical errors of disk cam mechanisms with a flat-faced follower. The resulting error equations do not really involve the location of the curvature center of the cam profile, and locating the curvature center of the cam profile is not essential. The resulting errors are significantly affected by the pressure angle, and the smaller pressure angle will result in the smaller mechanical error. In the worst case, owing to the joined effects of various design parameters, the accuracy of the follower motion may degrade considerably. For the oscillating follower case, all acceleration error functions have a sudden change at every beginning and at every end of the motion even though the theoretical follower displacement is cycloidal motion.