• Title/Summary/Keyword: tobacco growth

Search Result 381, Processing Time 0.025 seconds

Rhizobacterial Exopolysaccharides Elicit Induced Resistance on Cucumber

  • Park, Kyung-Seok;Kloepper, Joseph W.;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1095-1100
    • /
    • 2008
  • The role of exopolysaccharides (EPSs) from a plant growth-promoting rhizobacterium, Burkholderia gladioli IN26, on elicitation of induced systemic resistance was investigated. A purified EPS induced expression of PR-1a::GUS on tobacco and elicited induced resistance against Colletotrichum orbiculare on cucumber. The maximum level of disease protection was noted when seeds were soaked in 200 ppm of the EPS. Our results indicate that EPS from specific rhizobacteria can elicit induced resistance and suggest that bacterial EPS might be a useful elicitor of resistance under field conditions.

Relationship Between Bulk Density and Root Weight in White Ginseng (백삼의 심적밀도와 근중과의 관계)

  • Park, Hoon;Kim, Young-Hee;Yang, Cha-Bum
    • Journal of Ginseng Research
    • /
    • v.17 no.3
    • /
    • pp.224-227
    • /
    • 1993
  • Weight (g/root) and bulk density (g/$cm^3$) of tap root in 15-root-grade of 4-year-old white ginseng were investigated by specific gravity and weight-volume method. Bulk density measured by specific gravity ranged from 0.8 to 1.2g/$cm^3$ with almost normal distribution in frequency (number 1 of roots). Bulk density measured by volume-weight method had significant correlation with root weight. The percentage of high bulk density root (above 1.0) showed significant positive correlation with mean root weight or mean bulk density of root weight, indicating that the growth conditions for large root provide the better compactnes of root tissue.

  • PDF

Temperature Effect on Nitrification and Interrelationship between Nitrifiable NO3-N and Tobacco Productivity in Some Tobacco Tillage Soils with Different Soil pH (토양(土壤)pH가 상이(相異)한 몇가지 연초경작지(煙草耕作地) 토양(土壤)에서 질산화작용(窒酸化作用)에 대한 온도효과(溫度效果) 및 NO3-N와 잎담배 생산성(生産性)과의 상호관계(相互關係))

  • Hong, Soon-Dal;Jeong, Hun-Chae;Lee, Yun-Hwan;Kim, Jai-Joung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.290-295
    • /
    • 1989
  • An incubation study was conducted to examine the effect of soil pH and temperature on nitrification potential of 8 different soil series applied with no-N and 200 ugN/g soil as a compound fertilizer at 60 % moisture content of maximum water holding capacity for 8 weeks, whose series were ranged from acid to mild alkali as Gopyeong(Jincheon, pH 4.51), Yesan(Jincheon, pH 4.54), Jigog(Eumseong, pH 4.71), Songsan(Goesan, pH 5.01), Angye(Seongju, pH 5.34), Banho(Seongju, pH 5.73), Weongog(Jincheon, pH 5.93), and Banho(Seongju, pH 7.70), respectively. Interrelationship between the nitrifiable and the net $NO_3-N$(N added plot-no-N plot) accumulated in the soil and tobacco yield in the no fertilizer plot were investigated as well. 1. Nitrification response was various according to soil characteristics at each temperature condition showing that nitrifiable $NO_3-N$ values of the soils were much higher at $25^{\circ}C$ than $15^{\circ}C$. And difference of nitrification potential affected by temperature was markedly distinguishable from 2 weeks after incubation and was showing a tendency to reduce with increasing of soil pH. 2. At each temperature condition, net $NO_3-N$ accumulated at 2 and 4 weeks after incubation was positively correlated with soil pH. 3. Tobacco yield in the no fertilizer plot was more highly correlated with the values of nitrifiable and net $NO_3-N$ accumulated at $15^{\circ}C$ similar to soil temperature in rhizosphere of early stage of tobacco growth than those at optimum temperature($25^{\circ}C$).

  • PDF

Effects of Soil Moisture and Planting Depth on the Growth of 2-year Old Ginseng Plant (Panax ginseng C. A. Meyer) (토양수분(土讓水分) 및 재식심도(栽植深度)가 저년근(低年根) 고려인삼(高麗人蔘)의 생육(生育)에 미치는 영향(影響))

  • Lee, Jong Chul;Mok, Seong Kyun;Lee, Jong Wha;Jo, Jae Seong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.235-241
    • /
    • 1983
  • This experiment was conducted to determine the effect of soil moisture content and planting depth on the growth of 2-year old ginseng plant. The results obtained are summarized as follows; 1. When the ginseng seedlings were planted in soil by 4 to 5cm in depth, the length of leaflet and stem and the number of branch roots were significantly decreased but the stem diameter was increased. 2. Highly significant quadratic regressions were shown between soil moisture content and the growth of the stem, leaf and root of the ginseng plant. 3. Estimated amount of soil moisture for the maximum growth of the stem was 75% of field capacity, and that for length and width of the leaflet was about 65 to 66% of field capacity. Estimated soil moisture for the maximum growth of the root was about 56 to 58% of field capacity and that for increase in root weight was about 60 to 61% of field capacity. 4. Estimated soil moisture content for best growth of ginseng roots was 1 to 5% lower when the seedling was planted in 3cm depth compared with 2cm in depth. And when the amount of soil moisture was 31% of field capacity, the deep planting was adequate for good root growth. 5. Significant correlations were resulted between the dry weight of roots and the leaf length, the leaf width and the dry weight of stem and leaves. And also, significant correlations were obtained between the ratio of root dry weight to root fresh weight and the stem length, the leaf length, the leaf width and the dry weight of stem and leaves.

  • PDF

Preliminary growth chamber experiments using thermal infrared image to detect crop disease (적외선 촬영 영상 기반의 작물 병해 모니터링 가능성 타진을 위한 실내 감염 실험)

  • Jeong, Hoejeong;Jeong, Rae-Dong;Ryu, Jae-Hyun;Oh, Dohyeok;Choi, Seonwoong;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2019
  • The biotic stress of garlic and tobacco infected by bacteria and virus was evaluated using a thermal imaging camera in a growth chamber. The remote sensing technique using the thermal camera detected that garlic leaf temperature increased when the leaves were infected by bacterial soft rot of garlic. Furthermore, the temperature of leaf was relatively high for the leaves where the colony-forming unit per mL was large. Such temperature patterns were detected for tobacco leaves infected by Cucumber Mosaic Virus using thermal images. In addition, the crop water stress index (CWSI) calculated from leaf temperature also increased for the leaves infected by the virus. The event such that CWSI increased by the infection of the virus occurred before visual disease symptom appeared. Our results suggest that the thermal imaging camera would be useful for the development of crop remote sensing technique, which can be applied to a smart farm.

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

Effect of Plant Growth Regulators on Changes of Chlorophyll, Protein and RNA content in Tobaco-leaves Senescence (식물생장조절제(植物生長調節劑)가 엽연초(葉煙草)의 엽록소(葉緣素) 단백질(蛋白質) 및 RNA의 감소(減少)에 미치는 영향(影響))

  • Bae, H.W.
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.107-114
    • /
    • 1969
  • In order to elucidate the effects displayed by the plant growth regulators on the senecence of tobacco leaves, the author applied gibberellic acid, Kinetin, Indole-acetic acid, uracil, and malefic hydrazide to the excised leaves in concentration of 25mg/l of each regulators. And author obtained the results as following, 1. Parallel to the decreases of chlorophyll, the amounts of protein and RNA were decreased. 2. The supression of decrease of the amounts of RNA and protein was displayed by the plant growth regulators, G.A., I.A.A.. The decrease of them in M.A. treatments was more than in non-treatments. 3. The ratio changes of chlorophyll a/b and the changes of protein and RNA content seemed to be no relations.

  • PDF

Water Physiology of Panax ginseng III. Soil moisture, physiological disorder, diseases, insects and quality (인삼의 수분생리 III. 토양수분, 생리장해, 병해충과 품질)

  • Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.168-203
    • /
    • 1982
  • Effects of soil moisture on growth of Panax ginseng, of various factors on soil moisture, and of moisture on nutrition, quality, physiological disorder, diseases and insect damage were reviewed. Optimum soil moisture was 32% of field capacity with sand during seed dehiscence, and 55-65% for plant growth in the fields. Optimum soil moisture content for growth was higher for aerial part than for root and higher for width than for length. Soil factors for high yield in ginseng fields appeared to be organic matter, silt, clay, agreggation, and porosity that contributed more to water holding capacity than rain fall did, and to drainage. Most practices for field preparation aimed to control soil moisture rather than nutrients and pathogens. Light intensity was a primary factor affecting soil moisture content through evaporation. Straw mulching was best for the increase of soil moisture especially in rear side of bed. Translocation to aerial part was inhibited by water stress in order of Mg, p, Ca, N an Mn while accelerated in order of Fe, Zn and K. Most physiological disorders(leaf yellowing, early leaf fall, papery leaf spot, root reddening, root scab, root cracking, root dormancy) and quality factors were mainly related to water stress. Most critical diseases were due to stress, excess and variation of soil water, and heavy rain fall. The role of water should be studied in multidiciplinary, especially in physiology and pathology.

  • PDF

Characterization of Water and Sediment Environment in Water Shield (Brasenia schreberi) Habitats (순채 생육지에서 수체와 저토의 환경요인 분석)

  • Kim, Yoon-Dong
    • The Korean Journal of Ecology
    • /
    • v.19 no.3
    • /
    • pp.209-216
    • /
    • 1996
  • In order to identify the habitat characteristics of water shield (Brasenia schreberi), water quality and sediment characters were investigated. Water shield had peculial habitats such as old reservoir, developed basin-like reservior, a water depth within 1.5 m, constant water level, and thick sediment layer at the bottom. The species had very dense populations under the favorable growing conditions and occasionally grew together with Utricularia japonica. When water shield decreased, Nelumbo nucifera, Nuphar japonicum and Zizania latifolia increased. Natural populations of water shield need protection because it is endangered by the human activities and their harvest. The optimal conditions for the growth of water shield was near neutral pH. low conductivity and low turbidity. Therefore the input of pollutants should be controlled for its growth. The inorganic ion contents such as K, Mg, and Na were higher in the water shield growing area. Especially iron content of the sediments in the reservoirs with water shield was nearly five times as high as that in the reservoirs without water shield. thus iron might be one of the major limiting factors for the growth. It was considered that molybdenum can be another major factor because water shield is a nitrogen fixing plant.

  • PDF

The Interrelationships between Yield, Transpiration of the Tobacco Plant, and Seasonal Meteorological Factors during the Growing Season I. Interrelationship between Change of Soil Moisture and Transpiration during the Growing Season (연초재배기간중(煙草栽培期間中) 증산량(蒸散量) 및 수량(收量) I. 연초생육기간(煙草生育期間)동안의 증산량변화(蒸散量變化)와 토양수분(土壤水分)과의 상호관계(相互關係))

  • Hong, Soon-Dal;Kim, Jai-Joung;Cho, Seong-Jin;Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.228-233
    • /
    • 1989
  • Successive changes of transpiration by the tobacco plant during the growing season with pot trial treated with 30cm and 100cm ground water tables were compared with change of soil moisture content in rhizospere of field under natural rainfall conditions. Transpiration from the 41st to the 60th day after transplanting was the highest showing about 50% of total transpiration of whole cultivation period. As the result, soil moisture condition in rhizospere of field was kept insufficiently during the above period. Transpiration by the plant was so remarkably affected by the meteorological environment that the transpiration on rain-cloudy day was one third of that on clear day at middle stage of the growth. Maximum transpiration in a clear day was obtained from 14:00 to 16:00 at the 58th day after transplanting.

  • PDF