Browse > Article

Rhizobacterial Exopolysaccharides Elicit Induced Resistance on Cucumber  

Park, Kyung-Seok (Plant Pathology Division, National Institute of Agricultural Science and Technology)
Kloepper, Joseph W. (Department of Entomology and Plant Pathology, Auburn University)
Ryu, Choong-Min (Department of Entomology and Plant Pathology, Auburn University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.6, 2008 , pp. 1095-1100 More about this Journal
Abstract
The role of exopolysaccharides (EPSs) from a plant growth-promoting rhizobacterium, Burkholderia gladioli IN26, on elicitation of induced systemic resistance was investigated. A purified EPS induced expression of PR-1a::GUS on tobacco and elicited induced resistance against Colletotrichum orbiculare on cucumber. The maximum level of disease protection was noted when seeds were soaked in 200 ppm of the EPS. Our results indicate that EPS from specific rhizobacteria can elicit induced resistance and suggest that bacterial EPS might be a useful elicitor of resistance under field conditions.
Keywords
Plant growth-promoting rhizobacteria; exopolysaccharide; induced systemic resistance;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Lee, H. J., K. H. Park, J. H. Shim, R.-D. Park, Y. W. Kim, J. Y. Cho, et al. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079   과학기술학회마을
2 Ongena, M., E. Jourdan, M. Schäfer, C. Kech, H. Budzikiewicz, A. Luxen, and P. Thonart. 2005. Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol. Plant Microbe Interact. 18: 562-569   DOI   ScienceOn
3 Press, C. M., M. Wilson, S. Tuzun, and J. W. Kloepper. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant Microbe Interact. 10: 761- 768   DOI   ScienceOn
4 Shaharoona, B., G. M. Jamro, Z. A. Zahir, M. Arshad, and K. S. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) J. Microbiol. Biotechnol. 17: 1300-1307   과학기술학회마을
5 van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483   DOI   ScienceOn
6 Cerning, J., C. Bouillanne, M. Desmazeaud, and M. Landon. 1986. Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnol. Lett. 8: 625- 628   DOI
7 Gaur, D., L. Galbraith, and S. G. Wilkinson. 1998. Structural characterisation of a rhamnan and a fucorhamnan, both present in the lipopolysaccharide of Burkholderia vietnamiensis strain LMG 10926. Eur. J. Biochem. 258: 696-701   DOI   ScienceOn
8 Goode, M. J. 1958. Physiological specialization in Colletotrichum lagenarium. Phytopathology 48: 79-83
9 Iavicoli, A., E. Boutet, A. Buchala, and J.-P. Meraux. 2004. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact. 16: 851-858   DOI   ScienceOn
10 Alami, Y., W. Achouak, C. Marol, and T. Heulin. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl. Environ. Microbiol. 66: 3393-3398   DOI   ScienceOn
11 Felix, G., J. D. Duran, S. Volko, and T. Boller. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276   DOI   ScienceOn
12 Maurhofer, M., C. Hase, P. Meuwly, and J. P. Métraux. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonising Pseudomonas fluorescens strain CHAO: Influence of gacA and of pyoverdine production. Phytopathology 84: 139-146   DOI   ScienceOn
13 Jefferson, R. A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387-405   DOI
14 Ji, P., M. Wilson, H. L. Campbell, and J. W. Kloepper. 1997. Rhizobacterial mediated induced systemic resistance for the control of bacterial speck of fresh-market tomato, pp. 273-276. In A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo, and S. Akino (eds.), Plant Growth-Promoting Rhizobacteria: Present Status and Future Prospects. Nakanishi Printing, Sapporo
15 Mendrygal, K. E. and J. E. González. 2000. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 82: 599-606
16 Zehnder, G. W., C. Yao, J. F. Murphy, E. R. Sikora, J. W. Kloepper, D. J. Schuster, and J. E. Polston. 1999. Microbeinduced resistance against pathogens and herbivores: Evidence of effectiveness in agriculture, pp. 335-355. In A. A. Agrawal, et al. (eds.), Induced Plant Defenses Against Pathogens and Herbivores: Biochemistry, Ecology and Agriculture. APS Press, St. Paul, MN
17 Choi, D., J.-M. Maeng, G. Jeung, and W.-S. Cha, 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378   과학기술학회마을
18 Stefani, E. and K. Rudolph. 1989. Induced resistance in bean leaves pretreated with extracellular polysaccharides from phytopathogenic bacteria. J. Phytopathol. 124: 189-199   DOI
19 Ryu, C.-M., M. A. Farag, C.-H. Hu, M. S. Reddy, P. W. Paré, and J. W. Kloepper. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026   DOI   ScienceOn
20 Reitz, M., K. Rudolph, I. Schroder, S. Hoffmann-Hergarten, J. Hallmann, and R A. Sikora. 2000. Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl. Environ. Microbiol. 66: 3515-3518   DOI   ScienceOn
21 Leeman, M., P. J. A. Van, O. F. M. Den, M. Heinsbroek, P. A. H. Bakker, and B. Schippers. 1995. Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85: 1021-1027   DOI   ScienceOn
22 Ton, J., J. A. Van Pelt, L. C. Van Loon, and C. M. J. Pieterse. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15: 27-34   DOI   ScienceOn
23 Nürnberger, T., F. Brunner, B. Kemmerling, and L. Piater. 2004. Innate immunity in plants and animals: Striking similarities and obvious differences. Immunol. Rev. 198: 249-266   DOI   ScienceOn
24 Ryu, C.-M., J. F. Murphy, M. S. Reddy, and J. W. Kloepper. 2007. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promote plant growth on Arabidopsis thaliana. J. Microbiol. Biotechnol. 17: 280-286   과학기술학회마을
25 Kloepper, J. W., S. Tuzun, and J. Kuc. 1992. Proposed definitions related to induced disease resistance. Biocon. Sci. Tech. 2: 349-351   DOI
26 Ortmann, I., U. Conrath, and B. M. Moerschbacher. 2006. Exopolysaccharides of Pantoea agglomerans have different priming and eliciting activities in suspension-cultured cells of monocots and dicots. FEBS Lett. 580: 4491-4494   DOI   ScienceOn
27 Park, K. S. and J. W. Kloepper. 2000. Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Contr. 18: 2-9   DOI   ScienceOn
28 van Peer, R., G.. J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81: 728-734   DOI
29 DeMeyer, G., K. Audenaert, and M. Hofte. 1999. Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur. J. Plant Pathol. 105: 513-517   DOI
30 Leigh, J. A. and D. L. Coplin. 1992. Exopolysaccharides in plant-bacterial interactions. Annu. Rev. Microbiol. 46: 307-346   DOI   ScienceOn
31 Duijff, B. J., V. Gianinazzi-Pearson, and P. Lemanceau. 1997. Involvement of the outer-membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens WCS417r. New Phytol. 135: 325-334   DOI   ScienceOn
32 Kloepper, J. W., C.-M. Ryu, and S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266   DOI   ScienceOn
33 Uknes, S., S. Dincher, L. Friedrich, D. Negrotto, S. Williams, H. Thompson-Taylor, S. Potter, E. Ward, and J. Ryals. 1993. Regulation of pathogenesis-related protein-la gene expression in tobacco. Plant Cell 5: 159-169   DOI   ScienceOn
34 Guzzo, S. D., E. E. Bach, E. M. F. Martins, and E. B. C. Moraes. 1993. Crude exopolysaccharides (EPS) from Xanthomonas campestris pv. manihotis, Xanthomonas campestris pv. campestris, and commercial xanthan gum as inducers of protection in coffee plants against Hemileia vastatrix. J. Phytopathol. 139: 119-128   DOI   ScienceOn
35 Meziane, H., I. Van der Sluis, L. C. Van Loon, M. Höfte, and P. A. H. M. Bakker. 2005. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6: 177-185   DOI   ScienceOn
36 Denny, T. P. 1995. Involvement of bacterial polysaccharides in plant pathogenesis. Annu. Rev. Phytopathol. 33: 173-197   DOI   ScienceOn