• Title/Summary/Keyword: titanium tetra isopropoxide

Search Result 17, Processing Time 0.026 seconds

Preparation of $TiO_2$ nanopowder using titanium tetra-isopropoxide and effect of pH (Titanium tetra-isopropoxide를 이용한 $TiO_2$ Nanopowder 제초와 pH의 영향)

  • 임창성;오원춘;류정호;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2002
  • $TiO_2$ nanopowder was successfully prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCI and NH40H. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetraisopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4$OH, the morphology of the $TiO_2$ powder exhibited powder form. For the HCI catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of the catalysts.

Reaction morphology depending on the amounts of HCl and NH4OH and effect of pH on the preparation of TiO2 nanopowder (TiO2 나노분말 제조시 HCI과 NH4OH의 첨가량에 따른 반응양상과 pH의 영향)

  • Lim, Chang Sung;Oh, Won Chun
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.302-307
    • /
    • 2007
  • The reaction morphology was investigated depending on the amounts of HCl and $NH_4OH$, and the effect of pH was studied on the preparation of $TiO_2$ nanopowders. $TiO_2$ nanopowder was prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCl and $NH_4OH$. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetra-isopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4OH$, the morphology of the $TiO_2$ powder exhibited powder form. For the HCl catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of thecatalysts.

Preparation and characterization of$PbTiO_3$ thin films deposited on Si(100) substrate by MOCVD (MOCVD 법에 의해 Si(100) 기판 위에 제조된 $PbTiO_3$ 박막의 증착 특성)

  • 김종국;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • $PbTiO_3$(PT)thin films were prepared by simultaneous of $TiO_2$ and PbO on Si(100) substrate using metaloganic chemical vapor deposition (MOCVD). Titanium tetra-isopropoxide (TTIP) and $Pb(TMHD)_2$were used as source materials. As evaporation temperature and flow rate of TTIP were examined the crystal structure of PT thin films using XRD with setting deposition temperature, flow rate of Pb, and total flow rate of $520^{\circ}C$, 30 sccm, and 750 sccm, respectively. PT thin films could be deposited under 48~$50^{\circ}C$ and 18~22sccm of evaporation temperature and flow rate of TTIP, respectively. It was found that lead, oxygen, and silicon diffused at the iaterface between the film and the substrate.

  • PDF

A Study on the TiN Thin Film by Sol-Gel Method (졸-겔 방법으로 제조한 TiN 박막에 관한 연구)

  • 김왕섭;선효님;김경용;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.328-334
    • /
    • 1992
  • TiO2 sols were prepared by hydrolysis and polymerization of titanium tetra-isopropoxide (TTIP) in the presence of diethanolamine (DEA). The optimal mole ratio of water to TTIP is 2 and the concentration of the TiO2 sol 0.7 M. Golden TiN films without cracks were obtained by dipping Si(110) wafers into the TiO2 sol and followed by nitridation in NH3 at 1100$^{\circ}C$ for 5 h. The TiN films were studied by an optical microscope, DTA, TGA and X-ray analysis.

  • PDF

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

Effect of Silica Addition on Phase Transformation Characteristics of Heat-Treated Combustion-Synthesized TiO2 Nanoparticles (실리카가 첨가된 연소합성 TiO2 나노입자의 열처리에 따른 상변환 특성)

  • Kim, Min-Su;Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.186-193
    • /
    • 2009
  • In this article, the effect of silica addition on the phase transformation characteristics of $TiO_2$ nanoparticles synthesized by using an $O_2$-enriched coflow, hydrogen, diffusion flame was investigated. TTIP(titanium tetra-isopropoxide) and TEOS(tetraethyl-orthosilicate) were used as precursors for $TiO_2$ and $SiO_2$ nanoparticles, respectively. Based on the results from TEM and XRD analysis, it is believed that the silica addition on the flame synthesis of $TiO_2$ nanoparticles reduces the particle size distribution and raises the temperature of the phase transition from anatase to rutile. But the reduced sizes of the synthesized particles due to the silica addition made the sintering and phase transformation of particles more easily.

Separation of Selenite from Inorganic Selenium Ions using TiO2 Magnetic Nanoparticles

  • Kim, Jongmin;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3362-3366
    • /
    • 2013
  • A simple and quick separation technique for selenite in natural water was developed using $TiO_2$@$SiO_2/Fe_3O_4$ nanoparticles. For the synthesis of nanoparticles, a polymer-assisted sol-gel method using hydroxypropyl cellulose (HPC) was developed to control particle dispersion in the synthetic procedure. In addition, titanium butoxide (TBT) precursor, instead of the typical titanium tetra isopropoxide, was used for the formation of the $TiO_2$ shell. The synthesized nanoparticles were used to separate selenite ($Se^{4+}$) in the presence of $Se^{6+}$ or selenium anions for the photocatalytic reduction to $Se^0$ atom on the $TiO_2$ shell, followed by magnetic separation using $Fe_3O_4$ nanoparticles. The reduction efficiency of the photocatalytic reaction was 81.4% at a UV power of 6W for 3 h with a dark adsorption of 17.5% to the nanoparticles, as determined by inductively coupled plasma-mass spectrometry (ICP-MS). The developed separation method can be used for the speciation and preconcentration of selenium cations in environmental and biological analysis.

The Preparation of $TiO_2$ Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs (LED구동 $TiO_2$ 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성)

  • Kim, Yesol;Kim, Do Young;Jung, Min-Jung;Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.314-319
    • /
    • 2013
  • In this study, nitrogen doped $TiO_2$ ($N-TiO_2$) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased $TiO_2$ coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the $N-TiO_2$ coating on ACP surface, which could be more effective to remove benzene gas under the condition of LED lamp.

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

Preparation of Large Area $TiO_2$ Thin Films by Low Pressure Chemical Vapor Deposition

  • Jeon, Byeong-Su;Lee, Jung-Gi;Park, Dal-Geun;Sin, Se-Hui
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.861-869
    • /
    • 1994
  • Chemical vapor deposition using titanium tetra isopropoxide(TTIP) was employed to investigate effects of process parameters on the uniformity of $TiO_{2}$this films deposited on Indium Tin Oxide (ITO)coated glass. Deposition experiments were carried out at temperatures ranging from $300^{\circ}C$ to $400^{\circ}C$ under the pressure of 0.5~2 torrin a cold wall reactor which can handle 200mm substrate. It was found that the growth rate of $TiO_{2}$was closely related to the reaction temperature and the ractant gas compositions. Apparent activation energy for the deposition rate was 62.7lkJ/mol in the absence of $O_{2}$ and 100.4kj/mol in the presence of $O_{2}$, respectively. Homogeneous reactions in the gas phase were promoted when the total pressure of the reactor was increased. Variance in the film thickness was less than a few percent, but at high deposition rates film thickness was less uniform. Effects of reaction temperature on $TiO_{2}$ thin film characteristic was investigated with SEM, XRD and AES.

  • PDF