• Title/Summary/Keyword: titanium slag

Search Result 12, Processing Time 0.025 seconds

The Production of TiCl4 from Titaniferrous Magnetite Slag by the Chlorination in a Fluidized Bed Reactor (함티탄자철광 Slag의 유동층 염소화에 의한 TiCl4의 제조)

  • Song, Ki-Young;Lee, Sang-Soon;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.64-74
    • /
    • 1993
  • The chlorination of the titanium slag from titaniferrous magnetite by the arc-smelting in a fluidized bed reactor was investigated to produce $TiCl_4$ from domestic titaniferrous magnetite. The optimum conditions are as follows : reaction temperature; $950^{\circ}C$, reaction time; 90min, $Cl_2$ gas velocity; 3cm/sec, and petroleum coke-to-titanium slag weight ratio; 0.18. Also the mean diameter of titanium slag and petroleum coke was $44.6{\mu}m$ and $67.9{\mu}m$ respectively. Under these conditions 97.07% of Ti component in the titanium slag was chlorinated and the purity of $TiCl_4$ from this chlorination was 96.2%.

  • PDF

Study on the Remelting of Titanium Scrap by DC-ESR Process (DC-ESR법(去)을 이용한 타이타늄 스크랩의 재용융(再熔融)에 관한 연구(硏究))

  • Seo, Yeung-Deuk;Lee, Ho-Seong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.16 no.4
    • /
    • pp.33-39
    • /
    • 2007
  • Titanium scrap was re-melted and refined by using a DC-ESR (Direct Current Electro Slag Remelting) apparatus. A graphite rod was used as an anode. The used slag was $CaF_2-TiO_2-CaO$ slag system. The effect of slag composition on the shape and oxygen content of re-melted ingot was studied. The titanium ingot was produced very well from the $CaF_2-TiO_2$ slag system, and the oxygen content of the ingot was less than that of titanium scrap. The addition of CaO into $CaF_2-TiO_2$ slag system made the bad shape of titanium ingot. The oxygen content of the ingot was also higher than that of titanium scrap.

A Study on the Utilization of Blast-Furnace Slag (II) (Slag-Ceramics with Natural Minerals) (고로슬라그의 이용에 관한 연구 (II) (천연원료를 이용한 Slag-Ceramics))

  • Chi, Ung-Up;Rhee, Jhun;Han, Ki-Suk;Lee, Jae-Rock
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.1
    • /
    • pp.3-12
    • /
    • 1981
  • A glass-ceramics based on blast-furnace slag, with some additives to the theoretical composition in order to control properties of mother glass and the heat treatment conditions, has been investigated. The raw materials in this study were blast-furnace slag, serpentine, feldspar and quartz as mother glass ingredients. Titanium dioxide and chromite were used as the nucleating agents. Batch compositions of the prepared glasses and ceraming conditions were found by trial and error method. The optimum conditions were confirmed by analyzing several measured physical properties such as density change during heat treatment, microhardness of slag-ceramics prepared, viscosity change of glass at heat treatment temperatures, nucleation density change, dilatometric properties, differential thermal analysis, identification of the grown crystal and crystal sizes. The batch composition feasible to prepare slag-ceramics was 40% of blast-furnace slag, 25% of serpentine, 18% of feldspar and 17% of silica sand. Three percent titanium dioxide and 1% chromite of the mother glass were added as nucleating agents. The ceraming conditions under which the slag-ceramics having considerably good properties can be developed found as: "The glass was heated at 75$0^{\circ}C$ for 2 hours for nucleation, and the temperature was raised up to 1, 00$0^{\circ}C$ with a rate of 0.75$^{\circ}C$/min for crystal growth.owth.

  • PDF

Resources Recycling of a Special Blast Furnace Slag-Bearing TiO$_2$

  • Bai, Chenguang;Chen, Yan;Ou, Yangqi;Qiu, Guibao
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.503-507
    • /
    • 2001
  • In this paper the forming and the unique properties of PZH blast furnace slag, bearing TiO$_2$ 22~25%, have been introduced. The utilization of this kind of blast furnace slag, especially about recycling resource of TiO$_2$included in it, has been reviewed and discussed. According to research work experiences and tendency of new materials developing some suggestions about future research on PZH blast furnace slag have been put forward.

  • PDF

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

Material Characteristic of Slags and Iron Bloom Produced by Smelting Process Using Sand Iron (사철 제련을 통해 생산된 슬래그와 괴련철의 재료과학적 특성 비교)

  • Cho, Sung Mo;Cho, Hyun Kyung;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.34 no.1
    • /
    • pp.39-50
    • /
    • 2018
  • This study replicated traditional smelting methods to produce iron blooms from sand iron. The metallurgical properties of the slag and the iron blooms were analyzed. The sand iron materials used in the smelting experiments, which were based on ancient documents, were collected from Gyeong-Ju and Pohang. Analysis by WD-XRF and XRD showed that Gyeong-Ju's sand iron contains a high-titanium, with magnetite, and Pohang's sand iron contains a low-titanium, which magnetite and ilmenite were mixed. Analysis of the slag with XRD, and the micro-structure with metal microscopes and SEM-EDS, confirmed that the major compounds in the slag of the Gyeong-Ju's sand iron were fayalite and $w\ddot{u}stite$, and those in the slag of the Pohang's sand iron were titanomagnetite and fayalite. The differences in the main constituents were confirmed according to the Ti quantity. Finally, we observed the microstructures of the iron blooms. In the case of the iron bloom produced from Gyeong-Ju's sand iron, the outside was found to be dominantly a pearlite of eutectoid steel, while the inside was a hypo-eutectoid steel where ferrite and pearlite were mixed together. While, the major component of the iron bloom produced from Pohang's sand iron was ferrite, which is almost like pure iron. However, there were many impurities inside the iron blooms. Therefore, this experiment confirmed that making ironware required a process that involved removing internal impurities, refining, and welding. It will be an important data to identify the characteristics of iron by-products and the site through traditional iron-making experiments under various conditions.

Nozzle Clogging Mechanism in Continuous Casting for Titanium-Containing Steel (티타늄 첨가강의 연주 노즐막힘 기구)

  • Jung, Woo-Gwang;Kwon, Oh-Duck;Cho, Mun-Kyu
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.473-480
    • /
    • 2009
  • In order to provide the mechanism of nozzle clogging, recovered nozzles for high strength steel grade were examined carefully after continuous casting. The thickness of clogged material in SEN is increased in the following order: from the bottom to the top of the nozzle, upper part of slag line, and the pouring hole. Nozzle clogging material begins to form due the adhesion of metal to nozzle wall, the decarburization, and reduction of oxide in the refractory by Al and Ti in the melt. The reduction of oxide in the refractory by Al and Ti improves the wettability of the melt on the refractory and forms a thin Al-Ti-O layer. Metal containing micro alumina inclusions is solidified on the Al-Ti-O layer, and the solid layer grows due to the heat evolution through the nozzle wall. Thermodynamic calculation has been made for the related reactions. The effect of superheat to the nozzle clogging is discussed on ultra low carbon steel and low carbon steel.

Study on the Reaction Behavior of Self-reducing TiO2 Briquette (자기 환원성 TiO2 단광의 반응특성에 관한 연구)

  • Baek, S.J.;Shin, D.Y.;Min, J.W.;Choi, S.O.;Yun, D.J.;You, B.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.615-620
    • /
    • 2006
  • The reduction behavior of $TiO_{2}$ in Al and Al/CaSi containing self-reducing $TiO_{2}$ briquettes(SRTB) was investigated. The maximum yield of Ti was expected with the slag composition of 45-55%CaO in the $CaO-Al_{2}O_{3}$ system. When $CaCO_{3}$ was used as a flux, the oxidation loss of reducing agent by $CO_{2}$ should be compensated, and therefore it leads to excessive requirement of the reducing agent. By using Al and CaSi mixture as a reducing agent of $TiO_{2}$, the reaction products both oxide and metal could be liquefied, and separated effectively with each other. As a result, the yield of Ti increases remarkably. The optimum mixing ratio of CaSi to Al is 78%CaSi-22%Al.

Scientific Analysis of Iron Making By-Products Excavated from Gogi-ri, Namwon, Korea

  • Bae, Chae Rin;Kwon, In Cheol;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.1
    • /
    • pp.34-42
    • /
    • 2021
  • This study analyzes six slags excavated from the iron making site in Gogi-ri, Namwon, Korea to understand the characteristics of the ruins, and to confirm the iron making process performed at the time. The chemical components of the iron making by-products from the Gogi-ri site were analyzed, and the findings indicate total Fe contents between 23.24% and 37.56%, which are lower than the typical total Fe content found in ancient iron making processes. The deoxidation agent contents of the slags ranged from 43.88% to 58.13%, which are higher than the typical deoxidation agent content of ancient iron making processes. The high content suggests smooth separation between iron and slags, and TiO2 detected from the site suggests the use of materials with high titanium content in the iron making in the region. As for the microstructures of the slags, some slags have long pillar-shaped fayalites, while others have pillar-shaped wüstite along with ulvöspinel. Slags from the forging furnace show hammer scales created by both the earlier stages and later stages of forging work. The findings suggest that the iron making site in Gogi-ri, Namwon, Korea used to be an iron making facility where a full range of iron making process was carried out ranging from smelting to forging, and the ironmakers used a wide array of technologies to manufacture iron products.

Influence of Reduction Atmosphere and Temperature on the Separability and Distribution Behavior of Fe from FeTiO3 via Sulfurization (고온 황화반응에 의한 FeTiO3로부터 Fe의 분리성과 분배거동에 미치는 환원/황화 분위기 및 온도의 영향)

  • Shin, Seung-Hwan;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.45-52
    • /
    • 2019
  • $TiO_2$ as a raw material for producing titanium can be produced by carbon reduction of natural ilmenite ores over 1823 K and acid leaching of the obtained titanium-rich slag. However, the conventional process can cause very high energy consumption and a large amount of leaching residues. In the present study, we proposed the sulfurization of $FeTiO_3$ with $Na_2SO_4$ at temperatures below 1573 K, which can separate Fe in $FeTiO_3$ as the FeS based sulfide phase and Ti as the $TiO_2-Na_2O$ based oxide phase. This study is a fundamental study for sulfurization of $FeTiO_3$ to investigate the influence of reducing atmosphere, reaction temperature and the sulfur/Fe ratio on the separability and distribution behaviors of of Fe, Ti, and Na between the oxide phase and the sulfurized phase. At 1573 K and carbon saturation condition, the Fe can be separated from $FeTiO_3$ as Fe-C-S metal and a part of FeS, and the concentration of Fe in oxide decreased to 4 mass% after sulfurization.