• Title/Summary/Keyword: titanium oxide

Search Result 547, Processing Time 0.028 seconds

Shrink Proofing of Wool Fabrics by Titanium Oxide Photocatalytic Reaction

  • Ishii, Yuki;Urakawa, Hiroshi;Ueda, Mitsuo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.85-86
    • /
    • 2003
  • Shrink-proofing processing of wool fabrics is practically carried out by means of oxidation of wool with choline and/or covering of wool surface with resins. But, these are not necessarily environmentally friendly process causing a waste fluid containing organic chlorine compounds. Development of alternative method using more environmentally friendly process is desired. In this study, utilization of titanium oxide, TiO$_2$, photocatalytic reaction for the shrink-proofing of wool has been examined. It was found that the treatment of wool by TiO$_2$ photocatalytic reaction gave good shrink-proofing characteristics to wool fabrics.

  • PDF

High-Efficiency Polymer-Titanium Oxide Hybrid Solar Cells

  • Lee, Kwang-Hee
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.186-186
    • /
    • 2006
  • We report a new architecture for high efficiency polymer solar cells introducing a new concept of 'optical spacer' with new material. By implementing a novel solution-based titanium oxide ($TiO_{x}$) layer between the active layer and the electron collecting Al electrode, we invented a way to increase ${\sim}50\;%$ in power conversion efficiency compared to conventional polymer solar cells. Now the new devices exhibit ${\sim}6\;%$ power conversion efficiency, which is the highest value reported to date for a polymer based photovoltaic cell. The $TiO_{x}$ layer increases the efficiency by modifying the spatial distribution of the light intensity inside the device, thereby creating more photogenerated charge carriers in the bulk heterojunction layer.

  • PDF

The Bending Analysis of Three Phase Polymer Composite Plate Reinforced by Glass Fiber and Titanium Oxide Particles Including Creep Effect

  • Duc, Nguyen Dinh;Minh, Dinh Khac;VanThu, Pham
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.360-365
    • /
    • 2010
  • Three phase composite materials are widely used in the shipbuilding industry. When reinforced with fiber and particle, the physical and mechanical properties of polymer composite materials are improved. This paper presents the bending analysis of a three phase composite plate with an epoxy matrix, reinforced glass fiber and titanium oxide particles including creep effect when shear stress is taken into account. The obtained results indicate that creep strains lead to compression in the composite material. Introducing reinforced fibers and particles reduces the plate's deflection, when increasing the stretch coefficient allows the calculation of creep deflection during a long loading period.

PHOTOCATALYTIC ISOQUINOLINE PRODUCTION AND N-ALKYLATION BY PLATINIZED TITANIUM(IV) OXIDE PARTICLES SUSPENDED IN ALCOHOLIC SOLUTION OF PHENETHYLAMINES

  • Bunsho Ohtani;Yoshiko Moriguchi;Nishimoto, Sei-Ichi;Tomoyuki Inui
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.107-111
    • /
    • 1994
  • Photocatalytic ($\lambda$$_{ex}$ > 300 nm) reaction at room temperature by platinized titanium (IV) oxide particles produced 1-methyl-1, 2, 3, 4-tetrahydroisoquinolines (MIQ's) from phenethylamines in aqueous ethanol suspension under deaerated atmosphere. Among the phenethylamines, dopamine (2-(3, 4-dihydroxyphenyl) ethylamine) showed the highest reactivity to give MIQ almost selectively under the neutralized conditions. The other phenethylamines gave predominantly N-alkylated and N, N-dialkylated products in the methanol or ethanol solutions. The reaction mechanism includes a Schiff base intermediate to undergo either nucleophilic attack leading to MIQ or reduction to N-alkylated products.

  • PDF

Photocatalytic Membrane Reactor for VOC Decomposition Using Pt-Modified Titanium Oxide Membranes

  • Toshinori Tsuru;no, Takehiro-Kan;Tomohisa Yoshioka;Masashi Asaeda
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.39-42
    • /
    • 2004
  • Ceramic membranes have attracted a great attention because they have excellent resistance to most organic solvents and can be used over a wide temperature range. Especially, titania (titanium oxide, TiO$_2$) shows excellent chemical resistance and can be used both acidic and alkali solutions, and therefore, titania is one of the most promising materials for the preparation of porous membranes; titania membranes having pore sizes in the range of nanofiltration (NF) to ultrafiltration (UF) membrane have been prepared by the sol-gel process (Tsuru 2001).(omitted)

  • PDF

The Fabrication and Grindability of Diamond Wheel Bonded with Heat Resistance Aluminum Alloy (내열 Al합금 본드 다이아몬드 휠의 제조 및 연삭성)

  • 최성국
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.142-148
    • /
    • 1995
  • 2219 aluminum alloy bonded diamond wheels containing intermetallic compounds were fabricated by powder metallurgy method. Nickel and titanium were added in aluminum matrix piece. The hot pressing condition was $600^{\circ}C$ and 20 Mpa in the furnace of the electric resistance type. The mechanical properties and grinding tests were carried out to confirm the wheel performance. Aluminum oxide ceramics were chosen for use in the grinding tests. The test proved that the heat resistance 2219 aluminum bonded diamond wheel containing 15 wt% nickel and 15 wt% titanium respectively showed the best performance.

  • PDF

The Evaluation of the atomic composition and the surface roughness of Titanium Implants following Various Laser treatment with air-powder abrasive (레이저 처리후 임프란트 표면 변화에 관한 연구)

  • Kim, Tae-Jung;Lim, Sung-Bin;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.615-630
    • /
    • 2002
  • Various long-term studies have shown that titanium implants as abutments for different types of prostheses have become a predictable adjunct in the treatment of partially or fully edentulous patients. The continuous exposure of dental implants to the oral cavity with all its possible contaminants creates a problem. A lack of attachment, together with or caused by bacterial insult, may lead to peri-implantitis and eventual implant failure. Removal of plaque and calculus deposits from dental titanium implants with procedures and instruments originally made for cleaning natural teeth or roots may cause major alterations of the delicate titanium oxide layer. Therefore, the ultimate goal of a cleaning procedure should be to remove the contaminants and restore the elemental composition of the surface oxide without changing the surface topography and harming the surrounding tissues. Among many chemical and mechanical procedure, air-powder abrasive have been known to be most effective for cleaning and detoxification of implant surface. Most of published studies show that the dental laser may be useful in the treatment of pen-implantitis. $CO_2$ laser and Soft Diode laser were reported to kill bacteria of implant surface. The purpose of this study was to obtain clinical guide by application these laser to implant surface by means of Non-contact Surface profilometer and X-ray photoelectron spectroscopy(XPS) with respect to surface roughness and atomic composition. Experimental rough pure titanium cylinder models were fabricated. All of them was air-powder abraded for 1 minute and they were named control group. And then, the $CO_2$ laser treatment under dry, hydrogen peroxide and wet condition or the Soft Diode laser treatment under Toluidine blue O solution condition was performed on the each of the control models. The results were as follows: 1. Mean Surface roughness(Ra) of all experimental group was decreased than that of control group. But it wasn't statistically significant. 2. XPS analysis showed that in the all experimental group, titanium level were decreased, when compared with control group. 3. XPS analysis showed that the level of oxygen in the experimental group 1, 3($CO_2$ laser treatment under dry and wet condition) and 4(Soft Diode laser was used under toluidine blue O solution) were decreased, when compared with control group. 4. XPS analysis showed that the atomic composition of experimental group 2($CO_2$ laser treatment under hydrogen peroxide) was to be closest to that of control group than the other experimental group. From the result of this study, this may be concluded. Following air-powder abrasive treatment, the $CO_2$ laser in safe d-pulse mode and the Soft Diode laser used with photosensitizer would not change rough titanium surface roughness. Especially, $CO_2$ laser treatment under hydrogen peroxide gave the best results from elemental points of view, and can be used safely to treat peri-implantitis.